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Preface

Research in robust control theory has been one of the most active areas of

mainstream systems theory since the late 70s. This research activity has

been at the conuence of dynamical systems theory, functional analysis,

matrix analysis, numerical methods, complexity theory, and engineering ap-

plications. The discipline has involved interactions between diverse research

groups including pure mathematicians, applied mathematicians, computer

scientists and engineers, and during its development there has been a sur-

prisingly close connection between pure theory and tangible engineering

application. By now this research e�ort has produced a rather extensive

set of approaches using a wide variety of mathematical techniques, and

applications of robust control theory are spreading to areas as diverse as

control of uids, power networks, and the investigation of feedback mech-

anisms in biology. During the 90s the theory has seen major advances and

achieved a new maturity, centered around the notion of convexity. This em-

phasis is two-fold. On one hand, the methods of convex programming have

been introduced to the �eld and released a wave of computational meth-

ods which, interestingly, have impact beyond the study of control theory.

Simultaneously a new understanding has developed on the computational

complexity implications of uncertainty modeling; in particular it has be-

come clear that one must go beyond the time invariant structure to describe

uncertainty in terms amenable to convex robustness analysis.

Our broad goal in this book is to give a graduate-level course on ro-

bust control theory that emphasizes these new developments, but at the

same time conveys the main principles and ubiquitous tools at the heart

of the subject. This course is intended as an introduction to robust control
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theory, and begins at the level of basic systems theory, but ends having

introduced the issues and machinery of current active research. Thus the

pedagogical objectives of the book are (1) to introduce a coherent and uni-

�ed framework for studying robust control theory; (2) to provide students

with the control-theoretic background required to read and contribute to

the research literature; (3) the presentation of the main ideas and demon-

strations of the major results of robust control theory. We therefore hope

the book will be of value to mathematical researchers and computer sci-

entists wishing to learn about robust control theory, graduate students

planning to do research in the area, and engineering practitioners requiring

advanced control techniques. The book is meant to feature convex methods

and the viewpoint gained from a general operator theory setting, however

rather than be purist we have endeavored to give a balanced course which

�ts these themes in with the established landscape of robust control the-

ory. The e�ect of this intention on the book is that as it progresses these

themes are increasingly emphasized, whereas more conventional techniques

appear less frequently. The current research literature in robust control

theory is vast and so we have not attempted to cover all topics, but have

instead selected those that we believe are central and most e�ectively form

a launching point for further study of the �eld.

The text is written to comprise a two-quarter or two-semester gradu-

ate course in applied mathematics or engineering. The material presented

has been successfully taught in this capacity during the past few years by

the authors at Caltech, University of Waterloo, University of Illinois, and

UCLA. For students with background in state space methods a serious

approach at a subset of the material can be achieved in one semester. Stu-

dents are assumed to have familiarity with linear algebra, and otherwise

only advanced calculus and basic complex analysis are strictly required.

After an introduction and a preliminary technical chapter, the course

begins with a thorough introduction to state space systems theory. It then

moves on to cover open-loop systems issues using the newly introduced

concept of a norm. Following this the simplest closed-loop synthesis issue

is addressed, that of stabilization. Then there are two chapters on synthesis

which cover the H2 andH1 formulations. Next open-loop uncertain system

models are introduced; this chapter gives a comprehensive treatment of

structured uncertainty using perturbations that are either time invariant

or arbitrary. The results on open-loop uncertain systems are then applied to

feedback control in the following chapter where both closed-loop analysis

and synthesis are addressed. The �nal two chapters are devoted to the

presentation of four advanced topics in a more descriptive manner. In the

preliminary chapter of the book some basic ideas from convex analysis are

presented as is the important concept of a linear matrix inequality (LMI).

Linear matrix inequalities are perhaps the major analytical tool used in

this text, and combined with the operator theory framework presented later
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provide a powerful perspective. A more detailed summary of the chapters

is given below.

Chapter 1 Preliminaries in Finite Dimensional Space

Elementary linear algebra is �rst reviewed, and a short summary of basic

concepts from convex analysis are provided. A selection of matrix theory

topics is presented including Jordan form and singular value decomposition.

The chapter ends with a section on linear matrix inequalities.

Chapter 2 State Space Systems Theory

This chapter introduces the basic state space model. Controllability, reach-

ability and stabilizability are then covered in conjunction with various tests

for these properties. Eigenvalue assignment is discussed in full for multi-

input systems. The concept of observability is then presented together with

an introduction to observers and observer based controllers. Minimal real-

izations are treated, and the connection between state space realizations

and transfer functions is made.

Chapter 3 Linear Analysis

The major objective of this chapter is to introduce the operator theory

needed in the sequel. It begins by introducing normed and inner product

spaces, and then the operators on Hilbert space. The focus of the text is

systems with L2 inputs, and so a number of related function spaces are

presented, including the H2 and H1 spaces. The various connections of

these spaces with time invariance and causality are introduced.

Chapter 4 Model Realization and Reduction

The chapter initiates the quantitative study of systems using norms as

the system measure. The open-loop characteristics of systems are exam-

ined using the controllabilty and observability gramians, and a geometric

motivation is given for balanced realizations. Hankel operators and singu-

lar values are then discussed, followed by model reduction using balanced

truncation.

Chapter 5 Stabilizing Controllers

The concepts of closed-loop well-posedness and stability are de�ned. An

LMI solution to �nding a stabilizing controller is stated. Following this

the question of parametrizing all stabilizing controllers is pursued, and the

important idea of a coprime factorization is brought in. With this tool a

complete controller parametrization is given.
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Chapter 6 H2 Optimal Control

Various interpretations of the system H2 norm are given, and the optimal

H2 control problem is formulated. Subsequently the Riccati equation is

de�ned and some of its basic properties are elucidated. A solution to the

the optimal H2 problem is then derived. Finally an LMI solution is given

to the H2 state feedback synthesis problem.

Chapter 7 H1 Synthesis

The objective of this chapter is to pose the H1 synthesis problem and give

a complete LMI derivation. At the beginning of the chapter an LMI version

of the KYP lemma is proved making connections with the Riccati theory

of Chapter 6. Then the synthesis problem is solved in full, yielding general

constructive conditions.

Chapter 8 Uncertain Systems

In this chapter a framework for modeling systems with uncertainty is put

forth, based on structured perturbations in a feedback interconnection. The

notion of well-connectedness of these representations is presented. Then

necessary and su�cient conditions are derived for well-connectedness un-

der arbitrary structured perturbations, which take the form of a generalized

small gain conditions. This leads to the extension of the small-gain approach

to more general uncertainty structures by introducing the structured sin-

gular value. Then the method is applied to the study of time-invariant

structured uncertainty, and yields conditions in terms of the matrix struc-

tured singular value. Finally, the latter and its upper bound are studied in

geometric terms by means of quadratic forms in Euclidean space.

Chapter 9 Feedback Control of Uncertain Systems

The concepts of Chapter 8 are applied to the problem of robustness

analysis for feedback control. In particular causality is introduced into

the well-connectedness problem and the questions of robust stability and

performance are analyized. Then the D-K iteration heuristic for robust

synthesis is presented in detail; this involves a combination of the synthesis

procedures from earlier chapters and the uncertain analysis conditions just

derived in Chapter 8.

Chapter 10 Further Topics: Analysis

Two advanced topics are presented. The �rst is an introduction to integral

quadratic constraints (IQCs), which form and important and more general

way to de�ne uncertainty in systems; as with much of the earlier work

the associated analysis conditions reduce to LMIs. The second topic is

the robust H2 problem. This is an important control topic which aims to
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reconcile the superior performance characteristics of the H2 norm with the

robustness advantages of using perturbations measured in the L2-induced

norm.

Chapter 11 Further Topics: Synthesis

This chapter considers two new topics as well. It starts with a generaliza-

tion of the one-dimensional state space framework, studied thus far in the

text, to multiple-dimensions. This approach has applications to uncertain

system realization, gain scheduling and distributed systems. Finally time

varying systems are studied using an operator theoretic framework, and

we show how these systems can be treated formally as though they were

time invariant. Thus analogs of many of results derived in the book are

immediately available in this more general setting, by simply converting

LMIs to structured operator inequalities.

Geir E. Dullerud Fernando G. Paganini

Urbana Los Angeles
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0

Introduction

In this course we will explore and study a mathematical approach aimed

directly at dealing with complex physical systems that are coupled in feed-

back. The general methodology we study has analytical applications to

both human-engineered systems and systems that arise in nature, and the

context of our course will be its use for feedback control.

The direction we will take is based on two related observations about

models for complex physical systems. The �rst is that analytical or com-

putational models which closely describe physical systems are di�cult or

impossible to precisely characterize and simulate. The second is that a

model, no matter how detailed, is never a completely accurate represen-

tation of a real physical system. The �rst observation means that we are

forced to use simpli�ed system models for reasons of tractability; the lat-

ter simply states that models are innately inaccurate. In this course both

aspects will be termed system uncertainty, and our main objective is to

develop systematic techniques and tools for the design and analysis of sys-

tems which are uncertain. The predominant idea that is used to contend

with such uncertainty or unpredictability is feedback compensation.

There are several ways in which systems can be uncertain, and in this

course we will target the main three:

� The initial conditions of a system may not be accurately speci�ed or

completely known.

� Systems experience disturbances from their environment, and system

commands are typically not known a priori.



2 0. Introduction

� Uncertainty in the accuracy of a system model itself is a central

source. Any dynamical model of a system will neglect some physi-

cal phenomena, and this means that any analytical control approach

based solely on this model will neglect some regimes of operation.

In short: the major objective of feedback control is to minimize the e�ects

of unknown initial conditions and external inuences on system behavior,

subject to the constraint of not having a complete representation of the sys-

tem. This is a formidable challenge in that predictable behavior is expected

from a controlled system, and yet the strategies used to achieve this must

do so using an inexact system model. The term robust in the title of this

course refers to the fact that the methods we pursue will be expected to

operate in an uncertain environment with respect to the system dynamics.

The mathematical tools and models we use will be primarily linear, moti-

vated mainly by the requirement of computability of our methods; however

the theory we develop is directly aimed at the control of complex nonlinear

systems. In this introductory chapter we will devote some space to discuss,

at an informal level, the interplay between linear and nonlinear aspects in

this approach.

The purpose of this chapter is to provide some context and motivation

for the mathematical work and problems we will encounter in the course.

For this reason we do not provide many technical details here, however it

might be informative to refer back to this chapter periodically during the

course.

0.1 System representations

We will now introduce the diagrams and models used in this course.

0.1.1 Block diagrams

We will often view physical or mathematical systems a mappings. From

this perspective a system maps an input to an output; for dynamical sys-

tems these are regarded as functions of time. This is not the only or most

primitive way to view systems, although we will �nd this viewpoint to be

very attractive both mathematically and for guiding and building intuition.

In this section we introduce the notion of a block diagram for representing

systems, and most importantly for specifying their interconnections.

We use the symbol P to denote a system that maps an input function

u(t) to an output function y(t). This relationship is denoted by

y = P (u):

Figure 1 illustrates this relationship. The direction of the arrows indicate

whether a function is an input or an output of the system P . The details
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P uy

Figure 1. Basic block diagram

of how P constructs y from the input u is not depicted in the diagram,

instead the bene�t of using such block diagrams is that interconnections of

systems can be readily visualized.

Consider the so-called cascade interconnection of the two subsystems.

This interconnection represents the equations

P2 P1
y v u

v = P1(u)

y = P2(v):

We see that this interconnection takes the two subsystems P1 and P2 to

form a system P de�ned by P (u) = P2(P1(u) ). Thus this diagram simply

depicts a composition of maps. Notice that the input to P2 is the output

of P1.

P

Q

wz

y

u

Another type of interconnection involves feedback. In the �gure above

we have such an arrangement. Here P has inputs given by the ordered pair

(w; u) and the outputs (z; y). The system Q has input y and output u.

This block diagram therefore pictorially represents the equations

(z; y) = P (w; u)

y = Q(y):

Since part of the output of P is an input to Q, and conversely the output

of Q is an input to P , these systems are coupled in feedback.
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We will now move on to discussing the basic modeling concept of this

course and in doing so will immediately make use of block diagrams.

0.1.2 Nonlinear equations and linear decompositions

We have just introduced the idea of representing a system as an input-

output mapping, and did not concern ourselves with how such a mapping

might be de�ned. We will now outline the main idea behind the modeling

framework used in this course, which is to represent a complex system as

a combination of a perturbation and a simpler system. We will illustrate

this by studying two important cases.

Isolating nonlinearities

The �rst case considered is the decomposition of a system into a linear part

and a static nonlinearity. The motivation for this is so that later we can

replace the nonlinearity using objects more amenable to analysis.

To start consider the nonlinear system described by the equations

_x = f(x; u) (1)

y = h(x; u);

with the initial condition x(0). Here x(t), y(t) and u(t) are vector valued

functions, and f and h are smooth vector valued functions. The �rst of

these equations is a di�erential equation and the second is purely algebraic.

Given an initial condition and some additional technical assumptions, these

equations de�ne a mapping from u to y. Our goal is now to decompose this

system into a linear part and a nonlinear part around a speci�ed point; to

reduce clutter in the notation we assume this point is zero.

De�ne the following equivalent system

_x = Ax+Bu+ g(x; u) (2)

y = Cx+Du+ r(x; u);

where A, B, C and D provide a linear approximation to the dynamics, and

g(x; u) = f(x; u)�Ax�Bu

r(x; u) = h(x; u)� h(0; 0)� Cx�Du:

For instance one could take the Jacobian linearization

A = d1f(0; 0); B = d2f(0; 0);

C = d1h(0; 0); and D = d2h(0; 0);

where d1 and d2 denote vector di�erentiation by the �rst and second vector

variables respectively. The following discussion, however, does not require

this assumption. The system in (2) consists of linear functions and the

possibly nonlinear functions g and r. It is clear that the solutions to this
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system have a one-to-one correspondence with the solutions of (1), since we

have simply rewritten the functions. Further let us write these equations

in the equivalent form

_x = Ax+Bu+ w1 (3)

y = Cx+Du+ w2 (4)

(w1; w2) = (g(x; u); r(x; u)): (5)

Now let G be the mapping described by (3) and (4) which satis�es

G : (w1; w2; u) 7! (x; u; y);

given an initial condition x(0). Further let Q be the mapping which takes

(x; u) 7! (w1; w2) as described by (5). Thus the system of equations de�ned

by (3 - 5) has the block diagram below. The system G is totally described

Q

G

y u

Figure 2. System decomposition

by linear di�erential equations, and Q is a static nonlinear mapping. By

static we mean that the output of Q at any point in time depends only on

the input at that particular time, or equivalently that Q has no memory.

Thus all of the nonlinear behavior of the initial system (1) is captured in

Q and the feedback interconnection.

We will almost exclusively work with the case where the point (0; 0),

around which this decomposition is taken, is an equilibrium point of (1).

Namely

f(0; 0) = 0:

In this case the functions g and r satisfy g(0; 0) = 0 and r(0; 0) = 0, and

therefore Q(0; 0) = 0. Also the linear system described by

_x = Ax +Bu

y = Cx +Du

is the linearization of (1) around the equilibrium point. The linear system

G is thus an augmented version of the linearization.
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Higher order dynamics

In the construction just considered we were able to isolate nonlinear system

aspects in the mapping Q, and our motivation for this was so that later

we will be able to replace Q with an alternative description which is more

easily analyzed. For the same reason we will sometimes wish to do this

not only with the nonlinear part of a system, but also with some of its

dynamics. Let us now move on to consider this more complex scenario. We

have the equations �
_x1
_x2

�
=

�
f1(x1; x2; u)

f2(x1; x2; u)

�
(6)

y = h(x1; x2; u);

Following a similar procedure to the one we just carried out on the system

in (1), we can decompose the system described in (6) to arrive at the

equivalent set of equations:

_x1 = A1x1 +B1u+ g1(x1; x2; u) (7)

_x2 = f2(x1; x2; u)

y = C1x1 +Du+ r(x1 ; x2 ; u):

This is done by focusing on the equations _x1 = f1(x1; x2; u) and y =

h(x1; x2; u), and performing the same steps as before treating both x2 and

u as the inputs. The equations in (7) are equivalent to the linear equations

_x1 = A1x1 +B1u+ w1 (8)

y = C1x1 +Du+ w2;

coupled with the nonlinear equations

_x2 = f2(x1; x2; u) (9)

(w1; w2) = (g1(x1; x2; u); r(x1 ; x2 ; u) ):

Now similar to before we set G to be the linear system

G : (w1; w2; u) 7! (x1; u; y)

which satis�es the equations in (8). Also de�neQ to be the system described

by (9) where

Q : (x1; u) 7! (w1; w2):

With these new de�nitions of P and Q we see that Figure 2 depicts the

system described in (6). Furthermore part of the system dynamics and all

of the system nonlinearity is isolated in the mapping Q. Notice that the

decomposition we performed on (1) is a special case of the current one.
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Modeling Q

In each of the two decompositions just considered we split the initial sys-

tems, given by (1) or (6), into a G-part and a Q-part. The system G was

described by linear di�erential equations, whereas nonlinearities were con-

�ned to Q. This decomposing of systems into a linear low dimensional part,

and a potentially nonlinear and high dimensional part, is at the heart of

this course. The main approach adopted here to deal with the Q-part will

be to replace it with a set � of linear maps which capture its behavior.

The motivation for doing this is that the resulting analysis can frequently

be made tractable.

Formally stated we require the set � to have the following property: if

q = Q(p), for some input p, then there should exist a mapping � in the set

� such that

q = �(p): (10)

The key idea here is that the elements of the set � can be much simpler

dynamically than Q. However when combined in a set they are actually

able to generate all of the possible input-output pairs (p; q) which satisfy

q = Q(p). Therein lies the power of introducing�: one complex object can

be replaced by a set of simpler ones.

We now discuss how this idea can be used for analysis of the system

depicted in Figure 2. Let

�S(G; Q) denote the mapping u 7! y in Figure 2.

Now replace this map with the set of maps

�S(G; �)

generated by choosing � from the set �. Then we see that if the input-

output behaviors associated with all the mappings �S(G; �) satisfy a given

property, then so must any input-output behavior of �S(G; Q). Thus any

property which holds over the set � is guaranteed to hold for the system
�S(G; Q). However the converse is not true and so analysis using � can in

general be conservative. Let us consider this issue.

If a set � has the property described in (10), then providing that it has

more than one element, it will necessarily generate more input-output pairs

than Q. Speci�cally

f(p; q) : q = Q(p)g � f(p; q) : there exists � 2�, such that q = �qg:
Clearly the set on the left de�nes a function, whereas the input-output

pairs generated by � is in general only a relation. The degree of closeness

of these sets determines the level of conservatism introduced by using �

in place of Q.

We now illustrate how the behavior of Q can be captured by� with two

simple examples.
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Examples:

We begin with the decomposition for (1). For simplicity assume that x, y

and u are all scalar valued functions. Now suppose that the functions r and

g, which de�ne Q, are known to satisfy the sector or Lipschitz bounds

jw1(t)j � k11jx(t)j + k12ju(t)j (11)

jw2(t)j � k21jx(t)j + k22ju(t)j;
for some positive constants kij . It follows that if for particular sig-

nals (w1; w2) = Q(x; u), then there exist scalar functions of time

�11(t),�12(t),�21(t) and �22(t), each satisfying �ij(t) 2 [�kij ; kij ], such that

w1(t) = �11(t)x(t) + �12(t)u(t) (12)

w2(t) = �21(t)x(t) + �22(t)u(t);

De�ne the set � to consist of all 2� 2 matrix functions � which satisfy

� =

�
�11(t) �12(t)

�21(t) �22(t)

�
; where j�ij(t)j � kij for each time t � 0.

From the above discussion it is clear the set � has the property that given

any inputs and outputs satisfying (w1; w2) = Q(x; u), there exists � 2�

satisfying (12).

Let us turn to an analogous construction associated with the decomposi-

tion of the system governed by (6), recalling thatQ is now dynamic. Assume

x1 and u are scalar, and suppose it is known that if (w1; w2) = Q(x1; u)

then the following energy inequalities hold:Z 1

0

jw1(t)j2dt � k1

�Z 1

0

jx1(t)j2dt+
Z 1

0

ju(t)j2dt
�

Z 1

0

jw2(t)j2dt � k2

�Z 1

0

jx1(t)j2dt+
Z 1

0

ju(t)j2dt
�
;

when the right hand side integrals are �nite. De�ne� to consist of all linear

mappings � : (x1; u) 7! (w1; w2) which satisfy the above inequalities for

all functions x1 and u from a suitably de�ned class. It is possible to show

that if (w1; w2) = Q(x1; u), for some bounded energy functions x1 and u,

then there exists a mapping � in� such that �(x1; u) = (w1; w2). In this

sense � can generate any behavior of Q. As a remark, inequalities such

as the above assume implicitly that initial conditions in the state x2 can

be neglected; in the language of the next section, there is a requirement of

stability in high-order dynamics that can be isolated in this way. �

Using a set� instead of the mapping Q has another purpose. As already

pointed out physical systems will never be exactly represented by models

of the form (1) or (6). Thus the introduction of the set � a�ords a way to

account for potential system behaviors without explicitly modeling them.

For example the inequalities in (11) may be all that is known about some
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higher order dynamics of a system; note that given these bounds we would

not even need to know the order of these dynamics to account for them

using�. Therefore this provides a way to explicitly incorporate knowledge

about the unpredictability of a physical system into a formal model. Thus

the introduction of the � serves two related but distinct purposes:

� provides a technique for simplifying a given model;

� can be used to model and account for uncertain dynamics.

In the course we will study analysis and synthesis using these types of

models, particularly when systems are formed by the interconnection of

many such subsystems. We call these types of models uncertain systems.

0.2 Robust control problems and uncertainty

In this section we outline three of the basic control scenarios pursued in this

course. Our discussion is informal and is intended to provide motivation

for the mathematical analysis in the sequel.

0.2.1 Stabilization

One of the most basic goals of a feedback control system is stabilization.

This means nullifying the e�ects of the uncertainty surrounding the initial

conditions of a system. Before explaining this in more detail we review

some basic concepts.

Consider the autonomous system

_x = f(x); with some initial condition x(0). (13)

We will be concerned with equilibrium points xe of this system, namely

points where f(xe) = 0 is satis�ed. Without loss of generality in this dis-

cussion we shall assume that xe = 0, since this can always be arranged by

rede�ning f appropriately. We say that the equilibrium point zero is stable

if for any initial condition x(0) su�ciently near to zero, the time trajec-

tory x(t) remains near to zero. The equilibrium is exponentially stable if

it is stable and furthermore the function x(t) tends to zero at an exponen-

tial rate when x(0) is chosen su�ciently small. Stability is an important

property because it is unlikely that a physical system is ever exactly at an

equilibrium point. It says that if the initial state of the system is slightly

perturbed away from the equilibrium, the resulting state trajectory will

not diverge. Exponential stability goes further to say that if such initial

deviations are small then the system trajectory will tend quickly back to

the equilibrium point. Thus stable systems are insensitive to uncertainty

about their initial conditions.
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We now review a test for exponential stability. Suppose

_x = Ax

is the linearization of (13) at the point zero. It is possible to show: the

zero point of (13) is exponentially stable if and only if the linearization

is exponentially stable at zero.1 The linearization is exponentially stable

exactly when all the eigenvalues of the matrix A have negative real part.

Thus exponential stability can be checked directly by calculating A, the

Jacobian matrix of f at zero. Further it can be shown that if any of the

eigenvalues have positive real part, then the equilibrium point zero is not

even stable.

We now move to the issue of stabilization, which is using a control law

to turn an unstable equilibrium point, into an exponentially stable one.

Below is a controlled nonlinear system

_x = f(x; u); (14)

where the input is the function u. Suppose that (0; 0) is an equilibrium

point of this system. Our stability de�nitions are extended to such con-

trolled systems in the following way: the equilibrium point (0; 0) is de�ned

to be (exponentially) stable if zero is an (exponentially) stable equilibrium

point of the autonomous system _x = f(x; 0).

Our �rst task is to investigate conditions under which it is possible to

stabilize such an equilibrium point using a special type of control strategy

called a state feedback. In this scenario we seek a control feedback law of

the form

u(t) = p(x(t));

where p is a smooth function, such that the closed loop system

_x = f(x; p(x(t)) )

is exponentially stable around zero. That is we want to �nd a function p

which maps the state of the system x to a control action u. Let us assume

that such a p exists and examine some of its properties. First notice that in

order for zero to be an equilibrium point of the closed loop we may assume

p(0) = 0:

Given this the linearization of the closed loop is

_x = (A+BF )x;

where A = d1f(0; 0), B = d2f(0; 0) and F = dp(0). Thus we see that the

closed loop system is exponentially stable if and only if all the eigenvalues

of A + BF are strictly in the left half of the complex plane. Conversely

1This is under the assumption that f is su�ciently smooth.
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notice that if a matrix F exists such that A+BF has the desired stability

property, then the state feedback law p(x) = Fx will stabilize the closed

loop.

In the scenario just discussed the state x was directly available to use

in the feedback law. A more general control situation occurs when only

an observation y = h(x; u) is available for feedback, or when a dynamic

control law is employed. For these the analysis is more complicated, we

defer the study to subsequent chapters. We now illustrate these concepts

with an example.

Stabilization of a double pendulum

Shown below in Figure 3 is a double pendulum. In the �gure two rigid

links are connected by a hinge joint, so that they can rotate with respect

to each other. The �rst link is also constrained to rotate about a point

which is �xed in space. The control input to this rigid body system is a

� = torque

�2

�1

g = gravity

�

�

Figure 3. Double pendulum with torque input

torque � which is applied to the �rst link. The con�guration of this system

is completely speci�ed by �1 and �2, which are the respective angles that

the �rst and second links make with the vertical. Since we have assumed

that the links are ideal rigid bodies, this system can be described by a

di�erential equation of the form (14), where x = (�1; �2; _�1; _�2) and u = � .

It is routine to show that for each �xed angle �1e of the �rst link, there

exists a torque �e, such that

((�1e; �2e; 0; 0); �e) is an equilibrium point;

where �2e is equal to either zero or �. That is for any value of �1e we

have two equilibrium points of the system; both occur when the second



12 0. Introduction

link is vertical. When �2e = 0 the equilibrium point is stable. The �2e = �

equilibrium point is unstable.

We may wish to stabilize the pendulum about its upright position at such

an equilibrium point. To apply a state feedback control law as discussed

above we require the ability to measure x, namely we base our control law

on the link angles and their velocities. In the more general scheme, also

described above, we would only have access to some function of these four

measurements; a typical situation is that the observation is (�1; �2) the two

angles but not their velocities.

0.2.2 Disturbances and commands

Dynamic stability is usually a basic requirement of a controlled system,

however typically much more is demanded, and in fact often feedback is

introduced in systems which are already stable, with the objective of im-

proving di�erent aspects of the dynamic behavior. An important issue is

the e�ect of unknown environmental inuences. For instance consider the

ideal double pendulum just discussed above; more realistically such an ap-

paratus is also inuenced by ground vibrations felt at the point of �xture,

or it may experience forces on its links as a result of air currents or \gusts".

Since such external e�ects are rarely expected to help achieve desired sys-

tem behavior (e.g. balance the pendulum) they are commonly referred as

disturbances. One of the main objectives of feedback is to render a system

insensitive to such disturbances, and a signi�cant portion of our course will

be devoted to the study of systems from this point of view.

A pictorial representation of a controlled system being inuenced by

unknown inputs, such as disturbances, is shown below. Here we have a dy-

Dynamical

System

Control law

actionmeasurement

unknown
input

system
output

Figure 4. Controlled system

namical system in feedback with a control law, which takes some actions

based on measurement information. However there are other environmen-

tal inuences acting on the systems, which are unknown at the time of
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control design, and could be disturbances, or also external commands. The

behavior of the system is characterized by the outputs. To bring sharper

focus to our discussion we consider a second example.

Position control of an electric motor

+

�

i

v

�

�

�d

The �gure depicts a schematic diagram of an electric motor controlled

by excitation: a voltage applied to the motor windings results in a torque

applied to the motor shaft. While physical details are not central to our

discussion, we will �nd it useful to write down an elementary dynamical

model. The key variables are

� v applied voltage.

� i current in the �eld windings.

� � motor torque and �d opposing torque from the environment.

� � angle of the shaft and ! = _� angular velocity.

The objective of the control system is for the angular position � to follow

a reference command �r, despite the e�ect of an unknown resisting torque

�d. This so-called servomechanism problem is common in many applica-

tions, for instance we could think of moving a robot arm in an uncertain

environment.

We begin by writing down a di�erential equation model for the motor:

v = Ri+ L
di

dt
(15)

� = i (16)

J
d!

dt
= � � �d �B! (17)

Here (15) models the electrical circuit in terms of its resistance R and

inductance L; (16) says the torque is a linear function of the current; and
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(17) is the rotational dynamics of the shaft, where J is the moment of

inertia and B is mechanical damping. Since the electrical transients of (15)

are typically much faster than the mechanical dynamics, it seems reasonable

to neglect the former, setting L = 0. Also in what follows we normalize, for

simplicity, the remaining constants (R, , J , B) to unity in an appropriate

system of units.

We now address the problem of controlling our motor to achieve the

desired objective. We do this by a control system that measures the output

� and acts on the voltage v, following the law

v(t) = K(�r � �);

where K > 0 is a proportionality constant to be designed. Intuitively,

the system applies torque in the adequate direction to counteract the error

between the command �r and the actual output angle �. It is an instructive

exercise, left for the reader, to express this system in terms of Figure 4.

Here the driving signals are the command �r and the disturbance torque

�d, which are unknown at the time we design K.

Given this control law, we can �nd the equations of the resulting closed

loop dynamics, and with the above conventions obtain the following.

d

dt

�
�

!

�
=

�
0 1

�K �1

��
�

!

�
+

�
0 0

K �1

��
�r
�d

�
Thus our resulting dynamics have the form

_x = Ax+Bw

encountered in the previous section.

We �rst discuss system stability. It is straightforward to verify that the

eigenvalues of the above A matrix have negative real part whenever K >

0, therefore in the absence of external inputs the system is exponentially

stable. In particular, initial conditions will have asymptotically no e�ect.

Now suppose �r and �d are constant over time, then by solving the dif-

ferential equation it follows that the states (�; !) converge asymptotically

to

�(1) = �r �
�d

K
and !(1) = 0:

Thus the motor achieves an asymptotic position which has an error of �d=K

with respect to the command. We make the following remarks:

� Clearly if we make the constant K very large we will have accurate

tracking of �r despite the e�ect of �d. This highlights the central

role of feedback in achieving system reliability in the presence the

uncertainty about the environment. We will revisit this issue in the

following section.
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� The success in this case depends strongly on the fact that �r and �d are

known to be constant; in other words while their value was unknown,

we had some a priori information about their characteristics.

The last observation is in fact general to any control design question.

That is some information about the unknown inputs is required for us to

be able to assess system performance. In the above example the signals were

speci�ed except for a parameter. More generally the information available

is not so strongly speci�ed, for example one may know something about the

energy or spectral properties of commands and disturbances. The available

information is typically expressed in one of two forms:

(i) We may specify a set D and impose that the disturbance should lie

in D;

(ii) We may give a statistical description of the disturbance signals.

The �rst alternative typically leads to questions about the worst possible

system behavior caused by any element ofD. In the second case, one usually
is concerned with statistically typical behavior. Which is more appropriate

is application dependent, and we will provide methods for both alternatives

in this course.

We are now ready to discuss a more complicated instance of uncertainty

in the next section.

0.2.3 Unmodeled dynamics

When modeling a physical system we always approximate some aspects of

the physical phenomena, due to an incomplete theory of physics. Also we

frequently further simplify our models by choice so as to make analysis

more tractable, when we believe such a simpli�cation is innocuous. Now

we immediately wonder about the e�ect of such approximations when we

apply feedback to a system.

Take for instance our previous example of the electric motor, where we

deliberately neglected the e�ects of inductance in the electric circuit which

was deemed irrelevant to a study at the time scale of mechanical motion.

And the conclusion of our study was that we should make the constant K

as large as possible in order to achieve good tracking performance.

However if we keep the inductance L in our model, and repeat the anal-

ysis, it is not di�cult to see that the resulting third order system becomes

unstable for a su�ciently high value of K. Thus we see that our seemingly

benign modeling error can be ampli�ed by feedback to the point of making

the system unusable. Thus feedback is a double-edged sword: it can render

a system insensitive to uncertainty (e.g. the torque disturbance �d), but it

can also increase sensitivity to it, as was just seen. Thus feedback design

always involves a judicious balance of this fundamental tradeo�.
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� = torque

�2

�1

g = gravity

uid

�

�

Figure 5. Double pendulum with attached uid-vessel.

At this point the reader may be thinking that this di�culty was due

exclusively to careless modeling, we should have worked with the full, third

order model. Note however that there are many other dynamical aspects

which have been neglected. For instance the bending dynamics of the motor

shaft could also be described by additional state equations, and so on. We

could go to the level of spatially distributed, in�nite dimensional dynamics,

and there would still be neglected e�ects. No matter where one stops in

modeling, the reliability of the conclusions depends strongly on the fact that

whatever has been neglected will not become crucial later. In the presence of

feedback, this assessment is particularly challenging and is really a central

design question.

To emphasize this point in another example, consider the modi�ed double

pendulum shown in Figure 5. In this new setup a vessel containing uid has

been rigidly attached to the end of the second link. Suppose following our

discussion of the previous two sections, that we wish to stabilize this system

about one of its equilibria. The addition of the uid-vessel to this system

signi�cantly complicates the modeling of this system, and transforms our

two rigid body system into an in�nite dimensional system which is highly

intractable, to the point where it is even beyond the scope of accurate

computer simulation.
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However to balance this system an in�nite dimensional model is probably

not required, and perhaps a low dimensional one will su�ce. An extreme

model in this latter category would be one that modeled the uid-vessel

system as a point mass; it may well be that a feedback design which renders

our system insensitive to the value of this mass would perform well in the

real system. But possibly the oscillations of the uid inside the vessel may

compromise performance. In this case a more re�ned, but still tractable

model could consist of an oscillatory mass-spring type dynamical model.

These modeling issues become even more central if we interconnect many

uncertain or complex systems, to form a \system of systems". A very simple

example is the coupled system formed when the electric motor above is used

to generate the control torque for the uid-pendulum system.

The main conclusion we make is that there is no such thing as the \cor-

rect" model for control. A useful model is one in which the remaining

uncertainty or unpredictability of the system can be adequately compen-

sated by feedback. Thus we have set the stage for this course. The key

players are feedback, stability, performance, uncertainty and interconnec-

tion of systems. The mathematical theory to follow is motivated by the

challenging interplay between these aspects of designed dynamical systems.

Notes and References

For a precise de�nition of stability and theorems on linearization see any

standard text on dynamical systems theory; for instance [52]. For speci�c re-

sults on exponential stability and additional stability results in the context

of control theory see [69]. The double pendulum control example of x0.2.1
originates in [124], where it is named the pendubot. The primary focus of

this book is control theory; see [123] for more information on applications

and practical aspects of design.
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Preliminaries in Finite Dimensional

Space

This chapter is centered around �nite dimension vector spaces, mappings

on them, and the convexity property.

Much of the material is standard linear algebra, with which the reader

is assumed to have familiarity; correspondingly, our emphasis here is to

provide a survey of the key ideas and tools, setting a common notation and

presenting some results for future reference. We provide few proofs, but

the reader can gain practice with the results and machinery presented by

completing some of the exercises at the end of the chapter.

We also cover some of the basic ideas and results from convex analysis

in �nite dimensional space, which play a key role in this course. Having

completed these fundamentals we introduce a new object, linear matrix

inequalities or LMIs, which we will use throughout the course as a major

theoretical and computational tool.

1.1 Linear spaces and mappings

In this section we will introduce some of the basic ideas in linear algebra.

Our treatment is primarily intended as a review for the reader's conve-

nience, with some additional focus on the geometric aspects of the subject.

References are given at the end of the chapter for more details at both

introductory and advanced levels.
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1.1.1 Vector spaces

The structure introduced now will pervade our course, that of a vector

space, also called a linear space. This is a set that has a natural addition

operation de�ned on it, together with scalar multiplication. Because this

is such an important concept, and arises in a number of di�erent ways,

it is worth de�ning it precisely below. In the de�nition, the �eld F can

be taken here to be the real numbers R, or the complex numbers C . The

terminology real vector space, or complex vector space is used to specify

these alternatives.

De�nition 1.1. Suppose V is a nonempty set and F is a �eld, and that

operations of vector addition and scalar multiplication are de�ned in the

following way.

(a) For every pair u, v 2 V a unique element u+ v 2 V is assigned called

their sum;

(b) For each � 2 F and v 2 V, there is a unique element �v 2 V called

their product.

Then V is a vector space if the following properties hold for all u, v, w 2 V,
and all �, � 2 F:

(i) There exists a zero element in V, denoted by 0, such that v + 0 = v;

(ii) There exists a vector �v in V, such that v + (�v) = 0;

(iii) The association u+ (v + w) = (u+ v) + w is satis�ed;

(iv) The commutativity relationship u+ v = v + u holds;

(v) Scalar distributivity �(u+ v) = �u+ �v holds;

(vi) Vector distributivity (� + �)v = �v + �v is satis�ed;

(vii) The associative rule (��)v = �(�v) for scalar multiplication holds;

(viii) For the unit scalar 1 2 F the equality 1v = v holds.

Formally, a vector space is an additive group together with a scalar mul-

tiplication operation de�ned over a �eld F, which must satisfy the usual

rules (v){(viii) of distributivity and associativity. Notice that both V and

F contain the zero element, which we will denote by \0" regardless of the

instance.

Given two vector spaces V1 and V2, with the same associated scalar �eld,
we use V1�V2 to denote the vector space formed by their Cartesian product.
Thus every element of V1 � V2 is of the form

(v1; v2) where v1 2 V1 and v2 2 V2:
Having de�ned a vector space we now consider a number of examples.
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Examples:

Both R and C can be considered as real vector spaces, although C is more

commonly regarded as a complex vector space. The most common example

of a real vector space is Rn =R�� � ��R; namely n copies of R. We represent

elements of Rn in a column vector notation

x =

264x1...
xn

375 2 Rn ; where each xk 2 R:

Addition and scalar multiplication in Rn are de�ned componentwise:

x+ y =

26664
x1 + y1
x2 + y2

...

xn + yn

37775 ; �x =

26664
�x1
�x2
...

�xn

37775 ; for � 2 R; x; y 2 Rn :

Identical de�nitions apply to the complex space C n . As a further step,

consider the space Cm�n of complex m� n matrices of the form

A =

264a11 � � � a1n
...

. . .
...

am1 � � � amn

375 :
Using once again componentwise addition and scalar multiplication, Cm�n

is a (real or complex) vector space.

We now de�ne two vector spaces of matrices which will be central in our

course. First, we de�ne the Hermitian conjugate or adjoint of the above

matrix A 2 Cm�n by

A� =

264a
�
11 � � � a�

m1

...
. . .

...

a�1n � � � a�
mn

375 2 C n�m ;

where we use a� to denote the complex conjugate of a number a 2 C .

So A� is the matrix formed by transposing the indices of A and taking the

complex conjugate of each element. A square matrixA 2 C n�n is Hermitian

or self-adjoint if

A = A�:

The space of Hermitian matrices is denoted H n , and is a real vector space.

If a Hermitian matrix A is in Rn�n it is more speci�cally referred to as

symmetric. The set of symmetric matrices is also a real vector space and

will be written Sn.

The set F(Rm ; Rn ) of functions mapping m real variables to Rn is a

vector space. Addition between two functions f1 and f2 is de�ned by

(f1 + f2)(x1; : : : ; xm) = f1(x1; : : : ; xm) + f2(x1; : : : ; xm)
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for any variables x1; : : : ; xm; this is called pointwise addition. Scalar

multiplication by a real number � is de�ned by

(�f)(x1; : : : ; xm) = �f(x1; : : : ; xm):

An example of a less standard vector space is given by the set comprised

of multinomials in m variables, that have homogeneous order n. We denote

this set by P
[n]
m . To illustrate the elements of this set consider

p1(x1; x2; x3) = x21x2x3; p2(x1; x2; x3) = x31x2; p3(x1; x2; x3) = x1x2x3:

Each of these is a multinomial in 3 variables, however p1 and p2 have order

four, whereas the order of p3 is three. Thus only p1 and p2 are in P
[4]
3 .

Similarly of

p4(x1; x2; x3) = x41 + x2x
3
3 and p5(x1; x2; x3) = x21x2x3 + x1

only p4 is in P
[4]
3 , whereas p5 is not in any P

[n]
3 space since its terms are not

homogeneous. Some thought will convince you that P
[n]
m is a vector space

under pointwise addition.

�

1.1.2 Subspaces

A subspace of a vector space V is a subset of V which is also a vector space

with respect to the same �eld and operations; equivalently, it is a subset

which is closed under the operations on V .

Examples:

A vector space can have many subspaces, and the simplest of these is the

zero subspace, denoted by f0g. This is a subspace of any vector space and

contains only the zero element. Excepting the zero subspace and the entire

space, the simplest type of subspace in V is of the form

Sv = fs 2 V : s = �v; for some � 2 Rg;
given v in V . That is each element in V generates a subspace by multiplying

it by all possible scalars. In R2 or R3 , such subspaces correspond to lines

going through the origin.

Going back to our earlier examples of vector spaces we see that the

multinomials P
[n]
m are subspaces of F(Rm ; R), for any n.

Now Rn has many subspaces and an important set is those associated

with the natural insertion of Rm into Rn , when m < n. Elements of these

subspaces are of the form

x =

�
�x

0

�
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where �x 2 Rm and 0 2 Rn�m . �

Given two subspaces S1 and S2 we can de�ne the addition

S1 + S2 = fs 2 V : s = s1 + s2 for some s1 2 S1 and s2 2 S2g
which is easily veri�ed to be a subspace.

1.1.3 Bases, spans, and linear independence

We now de�ne some key vector space concepts. Given elements v1; : : : ; vm
in a vector space we denote their span by

spanfv1; : : : ; vmg;
which is the set of all vectors v that can be written as

v = �1v1 + � � �+ �mvm

for some scalars �k 2 F; the above expression is called a linear combination

of the vectors v1; : : : ; vm. It is straightforward to verify that the span always

de�nes a subspace. If for some vectors we have

spanfv1; : : : ; vmg = V ;
we say that the vector space V is �nite dimensional. If no such �nite set of

vectors exists we say the vector space is in�nite dimensional. Our focus for

the remainder of the chapter is exclusively �nite dimensional vector spaces.

We will pursue the study of some in�nite dimensional spaces in Chapter 3.

If a vector space V is �nite dimensional we de�ne its dimension, denoted

dim(V), to be the smallest number n such that there exist vectors v1; : : : ; vn
satisfying

spanfv1; : : : ; vng = V :
In that case we say that the set

fv1; : : : ; vng is a basis for V :
Notice that a basis will automatically satisfy the linear independence

property, which means that the only solution to the equation

�1v1 + � � �+ �nvn = 0

is �1 = � � � = �n = 0. Otherwise, one of the vi's could be expressed as a

linear combination of the others and V would be spanned by fewer than n

vectors. Given this observation, it follows easily that for a given v 2 V , the
scalars (�1; : : : ; �n) satisfying

�1v1 + � � �+ �nvn = v

are unique; they are termed the coordinates of v in the basis fv1; : : : ; vng.
Linear independence is de�ned analogously for any set of vectors

fv1; : : : ; vmg; it is equivalent to saying the vectors are a basis for their



1.1. Linear spaces and mappings 23

span. The maximal number of linearly independent vectors is n, the di-

mension of the space; in fact any linearly independent set can be extended

with additional vectors to form a basis.

Examples:

From our examples so far Rn ; Cm�n and P
[n]
m are all �nite dimensional

vector spaces; however F(Rm ; Rn ) is in�nite dimensional. As the reader

may already be aware, the real vector space Rn and complex vector space

Cm�n are m and mn dimensional, respectively. The dimension of P
[n]
m is

more challenging to compute and its determination is an exercise at the

end of the chapter.

An important computational concept in vector space analysis is associ-

ating a general k dimensional vector space V with the vector space Fk . This

is done by taking a basis fv1; : : : ; vkg for V , and associating each vector v

in V with the vector of coordinates in the given basis,264�1...
�k

375 2 Fk :

Equivalently, each vector vi in the basis is associated with the vector

ei =

266666666664

0
...

0

1

0
...

0

377777777775
2 Fk :

That is ei is the vector with zeros everywhere excepts its ith entry which

is one. Thus we are identifying the basis fv1; : : : ; vkg in V with the set

fe1; : : : ; ekg which is in fact a basis of Fk , called the canonical basis.

To see how this type of identi�cation is made, suppose we are dealing

with Rn�m , which has dimension k = nm. Then a basis for this vector

space is

Eij =

2640 � � � 0
...

. . . 1
...

0 � � � 0

375 ;
which are the matrices that are zero everywhere but their i; jth-entry which

is one. Then we identify each of these with the vector en(j�1)+i 2 Rk . Thus

addition or scalar multiplication on Rn�m can be translated to equivalent

operations on Rk . �
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1.1.4 Mappings and matrix representations

We are now ready to introduce the important concept of a linear mapping

between vector spaces. The mapping A : V ! W is linear if

A(�v1 + �v2) = �Av1 + �Av2

for all v1; v2 in V , and all scalars �1 and �2. Here V and W are vector

spaces with the same associated �eld F. The space V is called the domain

of the mapping, and W its codomain.

Given bases fv1; : : : ; vng and fw1; : : : ; wmg for V and W respectively,

we associate scalars akj with the mapping A, de�ning them such that they

satisfy

Avk = a1kw1 + a2kw2 + � � �+ amkwm;

for each 1 � k � n. Namely given any basis vector vk, the coe�cients ajk
are the coordinates of Avk in the chosen basis forW . It turns out that these

mn numbers ajk completely specify the linear mapping A. To see this is true

consider any vector v 2 V , and let w = Av. We can express both vectors in

their respective bases as v = �1v1+ � � �+�nvn and w = �1w1+ � � �+�mwm.
Now we have

w = Av = A(�1v1 + � � �+ �nvn)

= �1Av1 + � � �+ �nAvn

=

nX
k=1

mX
j=1

�kajkwj =

mX
j=1

 
nX

k=1

�kajk

!
wj ;

and therefore by uniqueness of the coordinates we must have

�j =

mX
j=1

�kajk ; j = 1; : : : ;m:

To express this relationship in a more convenient form, we can write the

set of numbers ajk as the m� n matrix

[A] =

264a11 � � � a1n
...

. . .
...

am1 � � � amn

375 :
Then via the standard matrix product we have264�1...

�n

375 =

264a11 � � � a1n
...

. . .
...

am1 � � � anm

375
264�1...
�n

375 :
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In summary any linear mapping A between vector spaces can be regarded

as a matrix [A] mapping Fn to Fm via matrix multiplication.

Notice that the numbers akj depend intimately on the bases fv1; : : : ; vng
and fw1; : : : ; wmg. Frequently we use only one basis for V and one for W
and thus there is no need to distinguish between the map A and the basis

dependent matrix [A]. We therefore simply write A to denote either the

map or the matrix, making which is meant context dependent.

We now give two examples to more clearly illustrate the above discussion.

Examples:

Given matrices B 2 C k�k and D 2 C l�l we de�ne the map 	 : C k�l !
C k�l by

	(X) = BX �XD;

where the right hand-side is in terms of matrix addition and multiplication.

Clearly 	 is a linear mapping since

	(�X1 + �X2) = B(�X1 + �X2)� (�X1 + �X2)D

= �(BX1 �X1D) + �(BX2 �X2D)

= �	(X1) + �	(X2):

If we now consider the identi�cation between the matrix space C k�l and
the product space C kl , then 	 can be thought of as a map from C kl to C kl ,

and can accordingly be represented by a complex matrix which is kl � kl.

We now do an explicit 2 � 2 example for illustration. Suppose k = l = 2

and that

B =

�
1 2

3 4

�
and D =

�
5 0

0 0

�
:

We would like to �nd a matrix representation for 	. Since the domain and

codomain of 	 are equal, we will use the standard basis for C 2�2 for each.
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This basis is given by the matrices Eij de�ned earlier. We have

	(E11) =

�
�4 0

3 0

�
= �4E11 + 3E21;

	(E12) =

�
0 1

0 3

�
= E12 + 3E22;

	(E21) =

�
2 0

�1 0

�
= 2E11 �E21;

	(E22) =

�
0 2

0 4

�
= 2E12 + 4E22:

Now we identify the basis fE11; E12; E21; E22g with the standard basis for
C 4 given by fe1; e2; e3; e4g. Therefore we get that

[	] =

2664
�4 0 2 0

0 1 0 2

3 0 �1 0

0 3 0 4

3775
in this basis.

Another linear operator involves the multinomial function P
[n]
m de�ned

earlier in this section. Given an element a 2 P [k]
m we can de�ne the mapping

� : P
[n]
m ! P

[n+k]
m by function multiplication

�(p)(x1; x2; : : : ; xm) := a(x1; x2; : : : ; xm)p(x1; x2; : : : ; xm):

Again � can be regarded as a matrix, which maps Rd1 ! Rd2 , where d1

and d2 are the dimensions of P
[n]
m and P

[n+k]
m respectively. �

Associated with any linear map A : V ! W is its image space, which is

de�ned by

ImA = fw 2 W : there exists v 2 V satisfying Av = wg:
This set contains all the elements of W which are the image of some point

in V . Clearly if fv1; : : : ; vng is a basis for V then

ImA = spanfAv1; : : : ; Avng
and is thus a subspace. The map A is called surjective when ImA =W .

The dimension of the image space is called the rank of the linear mapping

A, and the concept is applied as well to the associated matrix [A]. Namely

rank[A] = dim(ImA):

If S is a subspace of V , then the image of S under the mapping A is denoted

AS. That is
AS = fw 2 W : there exists s 2 S satisfying As = wg:
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In particular, this means that AV = ImA.

Another important set related to A is its kernel, or null space, de�ned

by

kerA = fv 2 V : Av = 0g:

In words, kerA is the set of vectors in V which get mapped by A to the

zero element in W , and is easily veri�ed to be a subspace of V .
If we consider the equation Av = w, suppose va and vb are both solutions;

then

A(va � vb) = 0:

Namely the di�erence between any two solutions is in the kernel of A. Thus

given any solution va to the equation, all solutions are parametrized by

va + v0;

where v0 is any element in kerA.

In particular, when kerA is the zero subspace, there is at most a unique

solution to the equation Av = w. This means Ava = Avb only when va = vb;

a mapping with this property is called injective.

In summary, a solution to the equation Av = w will exist if and only if

w 2 ImA; it will be unique only when kerA is the zero subspace.

The dimensions of the image and kernel of A are linked by the

relationship

dim(V) = dim(ImA) + dim(kerA);

proved in the exercises at the end of the chapter.

A mapping is called bijective when it is both injective and surjective, i.e.

for every w 2 W there exists a unique v satisfying Av = w. In this case

there is a well de�ned inverse mapping A�1 :W ! V , such that

A�1A = IV ; AA�1 = IW :

In the above, I denotes the identity mapping in each space, i.e. the map

that leaves elements unchanged. For instance, IV : v 7! v for every v 2 V .
From the above property on dimensions we see that if there exists a

bijective linear mapping between two spaces V and W , then the spaces

must have the same dimension. Also, if a mapping A is from V back to

itself, namely A : V ! V , then one of the two properties (injectivity or

surjectivity) su�ces to guarantee the other.

We will also use the terms nonsingular or invertible to describe bijective

mappings, and apply these terms as well to their associated matrices. Notice

that invertibility of the mapping A is equivalent to invertibility of [A] in

terms of the standard matrix product; this holds true regardless of the

chosen bases.
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Examples:

To illustrate these notions let us return to the mappings 	 and � de�ned

above. For the 2� 2 numerical example given, 	 maps C 2�2 back to itself.

It is easily checked that it is invertible by showing either

Im	 = C 2�2 ; or equivalently ker	 = 0:

In contrast � is not a map on the same space, instead taking P
[n]
m to the

larger space P
[n+k]
m . And we see that the dimension of the image of � is at

most n, and the dimension of its kernel at least k. Thus assuming k > 0

there are at least some elements w 2 P [n+k]
m for which

�v = w

cannot be solved. These are exactly the values of w that are not in Im�.

�

1.1.5 Change of basis and invariance

We have already discussed the idea of choosing a basis fv1; : : : ; vng for the
vector space V , and then associating every vector x in V with its coordinates

xv =

264�1...
�n

375 2 Fn ;

which are the unique scalars satisfying x = �1v1 + � � �+ �nvn. This raises

the question, suppose we choose another basis u1; : : : ; un for V , how can we

e�ectively move between these basis representations? That is given x 2 V ,
how are the coordinate vectors xv ; xu 2 Fn related?

The answer is as follows. Suppose that each basis vector uk is expressed

by

uk = t1kv1 + � � �+ tnkvn;

in the basis fv1; : : : ; vng. Then the coe�cients tik de�ne the matrix

T =

264t11 � � � t1n
...

. . .
...

tn1 � � � tnn

375 :
Notice that such a matrix is nonsingular, since it represents the iden-

tity mapping IV in the bases fv1; : : : ; vng and fu1; : : : ; ung. Then the

relationship between the two coordinate vectors is

Txu = xv:
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Now suppose A : V ! V and that Av : Fn ! Fn is the representation

of A on the basis v1; : : : ; vn, and Au is the representation of A using the

basis u1; : : : ; un. How is Au related to Av?

To study this, take any x 2 V and let xv, xu be its coordinates in the

respective bases, and zv, zu be the coordinates of Ax. Then we have

zu = T�1zv = T�1Avxv = T�1AvTxu:

Since the above identity and

zu = Auxu

both hold for every xu, we conclude that

Au = T�1AvT:

The above relationship is called a similarity transformation. This discussion

can be summarized in the following commutative diagram. Let E : V ! Fn

be the map that takes elements of V to their representation in Fn with

respect to the basis fv1; : : : ; vng. Then

V

V

Fn

Fn

E

E

A Av

T�1

T�1

Au = T�1AvT

Fn

Fn

Next we examine mappings when viewed with respect to a subspace. Sup-

pose that S � V is a k dimensional subspace of V , and that v1; : : : ; vn is a

basis for V with

spanfv1; : : : ; vkg = S:

That is the �rst k vectors of this basis forms a basis for S. If E : V ! Fn

is the associated map which maps the basis vectors in V to the standard

basis on Fn , then

ES = Fk � f0g � Fn :

Thus in Fn we can view S as the elements of the form�
x

0

�
where x 2 Fk :

When a basis has this property we say it is a canonical basis for the subspace

S. From the point of view of a linear mapping A : V ! V this partitioning

of Fn gives a useful decomposition of the corresponding matrix [A]. Namely
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we can regard [A] as

[A] =

�
A1 A2

A3 A4

�
;

where A1 : F
k ! Fk ; A2 : F

n�k ! Fk ; A3 : F
k ! Fn�k , and A4 : F

n�k !
Fn�k . We have that

EAS = Im

�
A1

A3

�
:

Finally to end this section we have the notion of invariance of a subspace

to a mapping. We say that a subspace S � V is A-invariant if A : V ! V
and

AS � S:

Clearly every map has at least two invariant subspaces, the zero subspace

and entire domain V . For subspaces S of intermediate dimension, the in-

variance property is expressed most clearly in a canonical basis for the

subspace. When S is A-invariant, the partitioning of [A] as above yields a

matrix of the form

[A] =

�
A1 A2

0 A3

�
:

Similarly if a matrix has this form the subspace Fk � f0g is [A]-invariant.
We will revisit the question of �nding non-trivial invariant sub-

spaces later in the chapter, when studying eigenvectors and the Jordan

decomposition.

In the next section we will pursue some of the geometric properties of

sets in linear spaces.

1.2 Subsets and Convexity

Up to now in this chapter, the only sets we have encountered are those

that are also vector spaces. In this section we will consider more general

subsets of a vector space V , with an emphasis of introducing and examining
convexity. Convexity is one of the main geometric ideas underlying much

of global optimization theory, and in particular is the foundation for a

major analytical tool used in this course. The results presented here are

for work in �nite dimensional vector spaces, but in many cases they have

in�nite dimensional versions as well. Throughout this section we have the

standing assumption that V is a �nite dimensional real vector space. Before

we address convexity it will be useful to introduce some topological aspects

of vector spaces.
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1.2.1 Some basic topology

To start we seek to de�ne the notion of a neighborhood of a point in the

vector space V . We do this by �rst de�ning the unit ball with respect to

a basis. Suppose that fu1; : : : ; ung is a basis for the vector space V . Then
the open unit ball in this basis is de�ned by

B(u1; : : : ; un) = f�1u1 + � � �+ �nun 2 V : �i 2 R; �21 + � � �+ �2
n
< 1g:

This set contains all the points that can be expressed, in the basis, with

the vector of coe�cients � inside the unit sphere of Fn . Clearly this set is

basis-dependent. In particular, since ftu1; : : : ; tung is also a basis for every
t 6= 0, then given any nonzero element v in V , there always exists a basis

such that v is in the corresponding unit ball, and another basis such that v

is not in the associated unit ball. The zero vector is the only element that

belongs to every unit ball.

We now de�ne the notion a neighborhood of a point, which intuitively

means any set that totally surrounds the given point in the vector space.

De�nition 1.2. A subset N (0) of the vector space V is a neighborhood of

the zero element if there exists a basis u1; : : : ; un for V such that

B(u1; : : : ; un) � N (0):

Further, a subset N (w) � V is a neighborhood of the point w 2 V if the set

N = fv 2 V : v + w 2 N (w)g
is a neighborhood of the zero element.

This says that a set is a neighborhood of zero provided that one of its

subsets is the unit ball in some basis. A neighborhood of a general point w 2
V is any set that is equal to a neighborhood of zero that has been translated

by w. Notice that while a basis was used in the de�nition, since its choice

is allowed to be arbitrary the resulting de�nition of a neighborhood is in

fact basis-independent.

If Q is a subset of V , we say that it is open if

for every v 2 Q, there exists a neighborhood of v which is a subset of Q.
We denote the complement of the set Q by Qc, which we recall is de�ned

by

Qc = fv 2 V : v 62 Qg:
A set Q is a closed set if its complement is open.

Next we de�ne the closure of a set. The closure of Q, denoted �Q, is
�Q = fv 2 V : for every neighborhood N (v) of v, N (v) \ Q is nonemptyg:
So the closure contains all points that are arbitrarily near to Q. Clearly,
Q � �Q. The closure is always a closed set, and is the smallest closed set

that contains Q; these facts are left as exercises.
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One of the major objectives of this section is to develop tests for de-

termining when two subsets of V do not intersect. In addition to being

disjoint, we would like to have a notion of when disjoint sets are not ar-

bitrarily close to each other. We call this property strict separation of the

sets. We say that two subsets Q1, Q2 � V are strictly separated if there

exists a neighborhood N (0) of zero, such that for all v1 2 Q1 and v2 2 Q2

the condition

v1 � v2 62 N (0) holds.

Clearly N (0) can be chosen such that v2�v1 62 N (0) simultaneously holds,

so this de�nition is symmetric with respect to the sets. Therefore sets are

strictly separated if the di�erence between any two elements chosen from

each set is uniformly outside a neighborhood of the origin.

The condition of strict separation is not always easy to check, and so

we present an alternative condition for a special case. First we say that a

subset Q 2 V is bounded if there exists a basis u1; : : : ; un for V such that

Q � B(u1; : : : ; un):
A set that is both closed and bounded is called compact.

We can now state the following property.

Proposition 1.3. Suppose Q1 and Q2 are subsets of V, and that Q1

is bounded. Then Q1 and Q2 are strictly separated if and only if the

intersection of their closures �Q1 \ �Q2 is empty.

The result states that provided that one set is bounded, two sets are strictly

separated if there closures are disjoint. Thus if two sets are closed, with one

of them compact, they are strictly separated exactly when they are disjoint.

Having introduced some topology for vector spaces, we are ready to move

on to discussing convexity.

1.2.2 Convex sets

Let us begin by de�ning the line segment that joins two points in V . Suppose
that v1 and v2 are in V , then we de�ne the line segment L(v1; v2) between

them as the set of points

L(v1; v2) = fv 2 V : v = �v1 + (1� �)v2 for some � 2 [0; 1]g:
Clearly the end points of the line segment are v1 and v2, which occur in

the parametrization when � = 1 and � = 0, respectively.

We can now turn to the idea of convexity. Suppose that Q is a nonempty

subset of the vector space V . Then Q is de�ned to be a convex set if

for any v1; v2 2 Q; the line segment L(v1; v2) is a subset of Q:
That is Q is convex if it contains all the line segments between its points.

Geometrically we have the intuitive picture shown in Figure 1.1.
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v1
v2

v1 v2

Figure 1.1. Convex and nonconvex sets

Clearly any vector space is convex, as is any subset fvg of a vector space
containing only a single element.

We can think of the expression �v1 + (1 � �)v2 for a point on the line

L(v1; v2) as a weighted average. To see this instead write equivalently

v = �1v1 + �2v2;

where �1; �2 2 [0; 1] and satisfy �1+�2 = 1. Then we see that if both �1 and

�2 are both equal to one half we have our usual notion of the average. And

if they take other values the weighted average \favors" one of the points.

Thus the clear generalization of such an average to n points v1; : : : ; vn is

v = �1v1 + � � �+ �nvn;

where �1 + � � � + �n = 1 and �1; : : : ; �n 2 [0; 1]. A line segment gave us

geometrically a point on the line between the two endpoints. The general-

ization of this to an average of n points, yields a point inside the perimeter

de�ned by the points v1; : : : ; vn. This is illustrated in Figure 1.2.

v1 v2

v3

v4

v6v5

v

co(fv1; : : : ; v6g)

Figure 1.2. Convex hull of �nite number of points

Given v1; : : : ; vn we de�ne the convex hull of these points by

co(fv1; : : : ; vng) = fv 2 V : v =

nX
k=1

�kvk; with �k 2 [0; 1];

nX
k=1

�k = 1g:

Thus this set is all the points inside the perimeter in Figure 1.2. In words

the convex hull of the points v1; : : : ; vn is simply the set comprised of all

weighted averages of these points. In particular we have that for two points

L(v1; v2) = co(fv1; v2g). It is a straightforward exercise to show that if
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Q is convex, then it necessarily contains any convex hull formed from a

collection of its points.

So far we have only de�ned the convex hull in terms of a �nite number

of points. We now generalize this to an arbitrary set. Given a set Q, we
de�ne its convex hull co(Q) by

co(Q) =fv 2 V : there exists n and v1; : : : ; vn 2 Q
such that v 2 co(fv1; : : : ; vng)g:

So the convex hull of Q is the collection of all possible weighted averages

of points in Q. It is straightforward to demonstrate that for any set Q:
� the subset condition Q � co(Q) is satis�ed;
� the convex hull co(Q) is convex;
� the relationship co(Q) = co (co(Q)) holds.

We also have the following results which relates convexity of a set to its

convex hull.

Proposition 1.4. A set Q is convex if and only if co(Q) = Q is satis�ed.

Notice that, by de�nition, the intersection of convex sets is always convex;

therefore, given a set Q, there exists a smallest convex set that contains Q;
it follows easily that this is precisely co(Q); in other words, if Y is convex

and Q � Y , then necessarily co(Q) is a subset of Y . Pictorially we have

Figure 1.3 to visualize Q and its convex hull.

co(Q)Q

Figure 1.3. Convex and nonconvex sets

A linear mapping F : V ! R is called a (linear) functional. If it is not

identical to zero (a standing assumption from now on), then it is always

surjective; namely for �xed a 2 R the equation

F (v) = a

always has a solution in the variable v 2 V . Also if v1 satis�es F (v1) = a,

all solutions to the equation are given by

v = v1 + v0; where v0 2 kerF:

Thus we can view this set of solutions as the kernel subspace shifted away

from the origin. Also, the dimension of kerF is dim(V) � 1. A set in an
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n-dimensional space, obtained by shifting an n � 1 dimensional subspace

away from the origin, is called a hyperplane. It is not di�cult to show

that every hyperplane can be generated by a linear functional F and a real

number a as described above. A hyperplane in R3 is depicted in Figure 1.4.

v1

Figure 1.4. A hyperplane

An important property of a hyperplane, which is clear in the above ge-

ometric case, is that it always breaks up the space into two half-spaces:

these have the form fv : F (v) � ag and fv : F (v) � ag.
This leads to the notion of separating two sets with a hyperplane. Given

two sets Q1 and Q2 in V , we say that the hyperplane de�ned by (F; a)

separates the sets if

(a) F (v1) � a, for all v1 2 Q1;

(b) F (v2) � a, for all v2 2 Q2.

Geometrically we have the illustration in Figure 1.5 below.

Q1

Q2

Figure 1.5. Separating hyperplane

Further we say that they are strictly separated if (b) is changed to

F (v2) � a+ �; for all v2 2 Q2;
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for some �xed � > 0. Such a separating hyperplane may not always exist:

in the �gure if we move the sets su�ciently close together it will not be

possible to �nd any hyperplane which separates the sets. However we have

the following major result, which says that if two sets are convex and

disjoint, then there always exists a separating hyperplane between them.

Theorem 1.5. Suppose Q1 and Q2 are two non-empty convex subsets of

the vector space V.
(a) If the intersection Q1 \ Q2 is empty, then there exists a hyperplane

which separates Q1 from Q2;

(b) There exists a strictly separating hyperplane between the sets if and

only if the sets are strictly separated.

This is a very powerful theorem which we will make critical use of later in

the course. While we defer the proof to the references, readers should gain

con�dence of its validity by drawing some geometrical pictures.

At this point we have developed the notions of convex sets and separation

in an abstract setting. We next consider two explicit examples which will

be key to us later.

Examples:

Here we will consider representing hyperplanes for two explicit vector

spaces, the spaces Rn and the symmetric matrices Sn. Let us �rst consider

Rn .

Given a linear functional F : Rn ! R we see that it is completely de�ned

by the numbers

F (e1); : : : ; F (en)

where fe1; : : : ; eng is the canonical basis for Rn . Thus given any vector

x 2 Rn we have

F (x) = x1F (e1) + � � �+ xnF (en)

Conversely given any y 2 Rn a linear functional F is de�ned on Rn by

F (x) = y1x1 + : : : + ynxn, which we express more concisely using matrix

multiplication by

F (x) = y�x:

Thus we see that any hyperplane in Rn is characterized by the equation

y�x = a;

for some y 2 Rn and a 2 R.

We now wish to generalize this to the real square matrices Rn�n . To do
this we �rst introduce the trace of a matrix X 2 Rn�n . The trace operation
is de�ned by

TrX = x11 + � � �+ xnn;
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the sum of the diagonal entries. Therefore Tr : Rn�n ! R. Also for X ,

Z 2 Rn�n and �, � 2 R we have

Tr(�X + �Z) =

nX
k=1

�xkk +

nX
k=1

�zkk = �TrX + �TrZ;

and so the trace operation de�nes a particular linear functional on Rn�n .
Now given an element Y 2 Rn�n it is also routine to show that the mapping

F : Rn�n ! R de�ned by

F (X) = Tr(Y �X) =

nX
k;j=1

xkjykj (1.1)

is a linear functional. The last identity is a consequence of the de�nitions

of trace and matrix product.

The question we now ask is whether every linear functional on Rn�n is

de�ned in this way? The answer is yes and can be seen by expanding X in

the standard basis of Rn�n , as

X =

nX
k;j=1

xkjEkj :

Given a linear functional F , we have

F (X) =

nX
k;j=1

xkjF (Ekj ) = Tr(Y �X);

where we have de�ned the matrix Y by ykj = F (Ekj). Similarly it is

straightforward to show that all linear functionals F on the symmetric

matrices Sn are of the form in (1.1) where Y 2 Sn, and an analogous

situation occurs over the space H n .

Later in the course we will speci�cally require separating hyperplanes

for sets constructed from Cartesian products of the above spaces. We

summarize what we will require in the following result.

Proposition 1.6. Suppose that the vector space V is given by the

Cartesian product

V = Rn1 � � � � � Rns � H ns+1 � � � � � H ns+f :

Then F is a linear functional on V if and only if there exists

Y = (y1; : : : ; yns ; Yns+1 ; : : : ; Yns+f ) 2 V such that

F (V ) = y�1v1 + � � �+ y�
ns
vns + Tr(Y �

ns+1
Vns+1) + � � �+ Tr(Y �

ns+f
Vns+f );

for all V = (v1; : : : ; vns ; Vns+1 ; : : : ; Vns+f ) 2 V.

�

As a �nal point in this section, we introduce the notion of cones in vector

space.
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A set Q � V is called a cone if it is closed under positive scalar

multiplication, i.e. if

v 2 Q implies tv 2 Q for every t > 0:

Clearly subspaces are cones, but the latter de�nition is broader since it

includes, for example, the half-line Cv = f�v : � > 0g for a �xed vector v.

Of particular interest are cones which have the convexity property. In

fact convex cones are precisely those which are closed under addition (i.e.

v1; v2 2 C implies v1 + v2 2 C). A canonical example of a convex cone is a

half-space

F (v) � 0

that goes through the origin, or an intersection of half-spaces of this form.

More illustrations are given in Figure 1.6.

Figure 1.6. Convex and nonconvex cones

Up to this point we have introduced a number of concepts related to

vector spaces and have for the most part developed our results in a basis

independent way, emphasizing the structure of linear spaces. This provides

a powerful way to visualize linear algebra. However for most parts of the

course it is much more e�cient to work in a particular basis, especially

since we are interested in developing results with computation in mind. In

this spirit we now turn to results about matrices.

1.3 Matrix Theory

The material of this section is aimed directly at both analysis and com-

putation. Our goals will be to review some basic facts about matrices,

and present some additional results for later reference, including two ma-

trix decompositions which have tremendous application, the Jordan form

and singular value decomposition. Both are extremely useful for analyti-

cal purposes, and the singular value decomposition is also very important
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in computations. We will also present some results about self-adjoint and

positive de�nite matrices.

1.3.1 Eigenvalues and Jordan form

In this section we are concerned exclusively with complex square matrices.

We begin with a de�nition: if A 2 C n�n , we say that � 2 C is an eigenvalue

of A if

Ax = �x (1.2)

can be satis�ed for some nonzero vector x in C n . Such a vector x is called

an eigenvector. Equivalently this means that ker(A � �I) 6= 0 or A � �I

is singular. A matrix is singular exactly when its determinant is zero, and

therefore we have that � is an eigenvalue if and only if

det(A� �I) = 0;

where det(�) denotes determinant. Regarding � as a variable we call the

polynomial

det(A� �I) = (�1)n�n + an�1�n�1 + � � �+ a0

the characteristic polynomial of A. If A is a real matrix then the coe�cients

ak will be real as well. The characteristic polynomial can be factored as

det(A� �I) = (�1 � �) � � � (�n � �):

The n complex roots �k , which need not be distinct, are the eigenvalues of

A. Furthermore if A is a real matrix, then any non real eigenvalues must

appear in conjugate pairs. Also, a matrix has the eigenvalue zero if and

only if it is singular.

Associated with every eigenvalue �k is the subspace

Ek = ker(A� �kI);

every nonzero element in Ek is an eigenvector corresponding to the

eigenvalue �k . Now suppose that a set of eigenvectors satis�es

spanfx1; : : : ; xng = C n :

Then we can de�ne the invertible matrix X =
�
x1 � � � xn

�
, and from

the matrix product we �nd

AX =
�
Ax1 � � � Axn

�
=
�
�1x1 � � � �nxn

�
= X�

where � is the diagonal matrix

� =

264�1 0
. . .

0 �n

375 :
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Thus in this case we have a similarity transformation X such that

X�1AX = � is diagonal, and we say that the matrix A is diagonalizable.

Summarizing we have the following result.

Proposition 1.7. A matrix A is diagonalizable if and only if

E1 + E2 + � � �+ En = C n holds.

The following example shows that not all matrices can be diagonalized.

Consider the 2� 2 matrix �
0 1

0 0

�
:

It has a repeated eigenvalue at zero, but only one linearly independent

eigenvector. Thus it cannot be diagonalized. Matrices of this form have a

special role in the decomposition we are about to introduce: de�ne the n�n
matrix N by

N =

26664
0 1 0

. . .

1

0 0

37775 ;
where N = 0 if the dimension n = 1. Such matrices are called nilpotent

because Nn = 0. Using these we de�ne a matrix to be a Jordan block if it

is of the form

J = �I +N =

26664
� 1 0

. . .

1

0 �

37775 :
Notice all scalars are 1�1 Jordan blocks. A Jordan block has one eigenvalue

� of multiplicity n. However it has only one linearly independent eigenvec-

tor. A key feature of a Jordan block is that it has precisely n J-invariant

subspaces. They are given by

C k � f0g;
for 1 � k � n. When k = 1 this corresponds exactly to the subspace

associated with its eigenvector. We can now state the Jordan decomposition

theorem.

Theorem 1.8. Suppose A 2 C n�n . Then there exists a nonsingular matrix

T 2 C n�n , and an integer 1 � p � n, such that

TAT�1 =

26664
J1 0

J2
. . .

0 Jp

37775 ;



1.3. Matrix Theory 41

where the matrices Jk are Jordan blocks.

This theorem states that a matrix can be transformed to one that is block-

diagonal, where each of the diagonal matrices is a Jordan block. Clearly

if a matrix is diagonalizable each Jordan block Jk will simply be a scalar

equal to an eigenvalue of A. In general each block Jk has a single eigenvalue

of A in all its diagonal entries; however a given eigenvalue of A may occur

in several blocks. If the dimensions of Jk is nk � nk, then from our earlier

discussion there are exactly nk invariant subspaces of A associated with Jk.

All invariant subspaces can be constructed from this collection associated

with the Jordan blocks.

We will not explicitly require a constructive method for transforming a

matrix to Jordan form, and will use this result solely for analysis.

1.3.2 Self-adjoint, unitary and positive de�nite matrices

We have already introduced the adjoint A� of a complex matrix A; in this

section we study in more detail the structure given to the space of matrices

by this operation. A �rst observation, which will be used extensively below

is that

(AB)� = B�A�

for matrices A, B of compatible dimensions; this follows directly by

de�nition.

Another basic concept closely related to the adjoint is the Euclidean

length of a vector x 2 C n , de�ned by

jxj =
p
x�x

This extends the usual de�nition of magnitude of a complex number, so

our notation will not cause any ambiguity. In particular,

jxj2 = x�x =
nX
i=1

jxij2:

Clearly jxj is never negative, and is zero only when the vector x = 0. Later

in the course we will discuss generalizations of this concept in more general

vector spaces.

We have already encountered the notion of a Hermitian matrix, charac-

terized by the self-adjoint property Q� = Q. Recall the notation H n for the

(real) vector space of complex Hermitian matrices. We now collect some

properties and introduce some new de�nitions, for later use. Everything we

will state will apply as well to the set Sn of real, symmetric matrices.

Our �rst result about self-adjoint matrices is that their eigenvalues are

always real. Suppose Ax = �x for nonzero x. Then we have

�x�x = x�Ax = (Ax)�x = ��x�x:
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Since x�x > 0 we conclude that � = ��.
We say that two vectors x,y 2 C n are orthogonal if

y�x = 0:

Given a set of vectors fv1; : : : ; vkg in C n we say the vectors are orthonormal

if

v�
i
vj =

�
1; if i = j;

0; if i 6= j.

The vectors are orthonormal if each has unit length and is orthogonal

to all the others. It easy to show that orthonormal vectors are linearly

independent, so such a set can have at most n members. If k < n, then

it is always possible to �nd a vector vk+1 such that fv1; : : : ; vk+1g is an

orthonormal set. To see this, form the k � n matrix

V �
k
=

264v
�
1

...

v�
k

375 :
The kernel of V �

k
has the nonzero dimension n � k, and therefore any

element of the kernel is orthogonal to the vectors fv1; : : : ; vkg. We conclude

that any element of unit length in kerV �
k
is a suitable candidate for vk+1.

Applying this procedure repeatedly we can generate an orthonormal basis

fv1; : : : ; vng for C n .
A square matrix U 2 C n�n is called unitary if it satis�es

U�U = I:

If U 2 Rn�n and satis�es the above identity it is more speci�cally called

an orthogonal matrix. From this de�nition we see that the columns of any

unitary matrix forms an orthonormal basis for C n . Further, since U is

square it must be that U� = U�1 and therefore UU� = I . So the columns

of U� also form an orthonormal basis. A key property of unitary matrices

is that if y = Ux, for some x 2 C n , then the length of y is equal to that of

x:

jyj =
p
y�y =

p
(Ux)�(Ux) =

p
x�U�Ux = jxj:

Unitary matrices are the only matrices that leave the length of every vector

unchanged. We are now ready to state the spectral theorem for Hermitian

matrices.

Theorem 1.9. Suppose H is a matrix in H n . Then there exist a unitary

matrix U and a real diagonal matrix � such that

H = U�U�:

Furthermore, if H is in Sn then U can be chosen to be orthogonal.
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Notice that since U� = U�1 for a unitary U , the above expression is a

similarity transformation. Therefore the theorem says that a self-adjoint

matrix can be diagonalized by a unitary similarity transformation. Thus

the columns of U are all eigenvectors of H . Since the proof of this result

assembles a number of concepts from this chapter we provide it below.

Proof . We will use an induction argument. Clearly the result is true if H

is simply a scalar, and it is therefore su�cient to show that if the result

holds for matrices in H n�1 then it holds for H 2 H n . We proceed with

the assumption that the decomposition result holds for (n � 1) � (n � 1)

Hermitian matrices.

The matrix H has at least one eigenvalue �1, and �1 is real since H is

Hermitian. Let x1 be an eigenvector associated with this eigenvalue, and

without loss of generality we assume it to have length one. De�ne X to be

any unitary matrix with x1 as its �rst column, namely

X = [x1 � � �xn]:
Now consider the product X�AX . Its �rst column is given by X�Ax1 =

�1X
�x1 = �1e1, where e1 is the �rst element of the canonical basis. Its

�rst row is described by x�1AX which is equal to �1x
�
1X = �1e

�
1, since

x�1A = �1x
�
1 because A is self-adjoint. Thus we have

X�AX =

�
�1 0

0 A2

�
;

where A2 a Hermitian matrix in H n�1 . By the inductive hypothesis there

exists a unitary matrix X2 in C
(n�1)�(n�1) such that A2 = X2�2X

�
2 , where

�2 is both diagonal and real. We conclude that

A =

�
X

�
I 0

0 X2

���
�1 0

0 �2

���
I 0

0 X�
2

�
X�
�
:

The right-hand side gives the desired decomposition.

If H is a real matrix, that is in H n , then all the matrices in the

construction above are also real, proving the latter part of the theorem. �

We remark in addition that the (real) eigenvalues of H can be arranged

in decreasing order in the diagonal of �. This follows directly from the

above induction argument: just take �1 to be the largest eigenvalue.

We now focus on the case where these eigenvalues have a de�nite sign.

Given Q 2 H n , we say it is positive de�nite, denoted Q > 0, if

x�Qx > 0;

for all nonzero x 2 C n . Similarly Q is positive semide�nite, denoted Q � 0,

if the inequality is nonstrict; and negative de�nite and negative semide�nite

are similarly de�ned. If a matrix is not positive or negative semide�nite,

then it is inde�nite.
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The following properties of positive matrices follow directly from the

de�nition, and are left as exercises:

� If Q > 0 and A 2 C n�n , then A�QA � 0. If A is invertible, then

A�QA > 0.

� If Q1 > 0, Q2 > 0, then �1Q1 + �2Q2 > 0 whenever �1 > 0, �2 � 0.

In particular, the set of positive de�nite matrices is a convex cone in

H n , as de�ned in the previous section.

At this point we may well ask, how can we check whether a matrix is

positive de�nite? The following answer is derived from Theorem 1.9:

If Q 2 H n ; then Q > 0 if and only if the eigenvalues of Q are all positive.

Notice in particular that a positive de�nite matrix is always invertible, and

its inverse is also positive de�nite. Also a matrix is positive semi-de�nite

exactly when none of its eigenvalues are negative; in that case the number

of strictly positive eigenvalues is equal to the rank of the matrix.

An additional useful property for positive matrices is the existence of a

square root. Let Q = U�U� � 0, in other words the diagonal elements of

� are non-negative. Then we can de�ne �
1
2 to be the matrix with diagonal

elements �
1
2

k
, and

Q
1
2 := U�

1
2U�:

Then Q
1
2 � 0 (also Q

1
2 > 0 when Q > 0) and it is easily veri�ed that

Q
1
2Q

1
2 = Q.

Having de�ned a notion of positivity, our next aim is to generalize the

idea of ordering to matrices, namely what does it mean for a matrix to be

larger than another matrix? We write

Q > S

for matrices Q, S 2 H n to denote that Q � S > 0. We refer to such

expressions generally as matrix inequalities. Note that for matrices that

it may be that neither Q � S nor Q � S holds, i.e. not all matrices are

comparable.

We conclude our discussion by establishing a very useful result, known

as the Schur complement formula.

Theorem 1.10. Suppose that Q;M , and R are matrices and that M and

Q are self-adjoint. Then the following are equivalent

(a) The matrix inequalities Q > 0 and

M �RQ�1R� > 0 both hold;

(b) The matrix inequality�
M R

R� Q

�
> 0 is satis�ed:
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Proof . The two inequalities listed in (a) are equivalent to the single block

inequality. �
M �RQ�1R� 0

0 Q

�
> 0 :

Now left and right multiply this inequality by the nonsingular matrix�
I RQ�1

0 I

�
and its adjoint, respectively, to get�

M R

R� Q

�
=

�
I RQ�1

0 I

�
�
�
M �RQ�1R� 0

0 Q

� �
I 0

Q�1R� I

�
> 0:

Therefore inequality (b) holds if and only if (a) holds. �

We remark that an identical result holds in the negative de�nite case,

replacing all \<" by \>".

Having assembled some facts about self-adjoint matrices, we move on to

our �nal matrix theory topic.

1.3.3 Singular value decomposition

Here we introduce the singular value decomposition of a rectangular matrix,

which will have many applications in our analysis, and is of very signi�cant

computational value. The term singular value decomposition or SVD refers

to the product U�V � in the statement of the theorem below.

Theorem 1.11. Suppose A 2 Cm�n and that p = minfm; ng. Then there

exist unitary matrices U 2 Cm�m and V 2 C n�n such that

A = U�V �;

where � 2 Rm�n and its scalar entries satisfy

(a) the condition �ij = 0, for i 6= j;

(b) the ordering �11 � �22 � � � � � �pp � 0.

Additionally, if A 2 Rm�n then U and V can be chosen to be orthogonal

matrices.

Proof . Since the result holds for A if and only if it holds for A�, we assume
without loss of generality that n � m. To start let r be the rank of A�A,
and therefore by Theorem 1.9 we have

A�A = V

�
��2 0

0 0

�
V �; where �� =

264�1 0
. . .

0 �r

375 > 0 and V is unitary.
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We also assume that the nonstrict ordering �1 � � � � � �r holds. Now de�ne

J =

�
�� 0

0 I

�
and we have

J�1V �A�AV J�1 = (AV J�1)�(AV J�1) =
�
Ir 0

0 0

�
;

where Ir denotes the r � r identity matrix. From the right-hand side we

see that the �rst r columns of AV J�1 form an orthonormal set, and the

remaining columns must be zero. Thus

AV J�1 =
�
U1 0

�
;

where U1 2 Cm�r . This leads to

A =
�
U1 0

� ��� 0

0 I

�
V � =

�
U1 U2

� ��� 0

0 0

�
V �;

where the right-hand side is valid for any U2 2 Cm�(n�r) . So choose U2
such that

�
U1 U2

�
is unitary.

To prove the �nal part of the theorem, simply note that if A is a real

matrix then all of the constructions above can be made with real matrices.

�

When n = m the matrix � in the SVD is diagonal. When these dimensions

are not equal � has the form of either264�11 0
. . .

0 �mm 0

375 when n > m, or

26664
�11 0

. . .

�nn
0 0

37775 when n < m.

The �rst p non negative scalars �kk are called the singular values of the

matrix A, and are denoted by the ordered set �1; : : : �p, where �k = �kk . As

we already saw in the proof, the decomposition of the theorem immediately

gives us that

A�A = V (���)V � and AA� = U(���)U�;

which are singular value decompositions of A�A and AA�. But since V � =
V �1 and U� = U�1 it follows that these are also the diagonalizations of

the matrices. We see

�21 � �22 � � � � � �2
p
� 0

are exactly the p largest eigenvalues of A�A and AA�; the remaining eigen-
values of either matrix are all necessarily equal to zero. This observation

provides a straightforward method to obtain the singular value decomposi-

tion of any matrix A, by simply diagonalizing the Hermitian matrices A�A
and AA�.
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The SVD of a matrix has many useful properties. We use ��(A) to de-

note the largest singular value �1, which from the SVD has the following

property.

��(A) = maxfjAvj : v 2 C n and jvj = 1g:
Namely it gives the maximum magni�cation of length a vector v can

experience when acted upon by A.

Finally, partition U =
�
u1 � � � um

�
and V =

�
v1 � � � vn

�
and

suppose that A has r nonzero singular values. Then

ImA = Im
�
u1 � � �ur

�
and kerA = Im

�
vr+1 � � � vn

�
:

That is the SVD provides an orthonormal basis for both the image and

kernel of A. Furthermore notice that the rank of A is equal to r, precisely

the number of nonzero singular values.

1.4 Linear Matrix Inequalities

This section is devoted to introducing the central concept of a linear ma-

trix inequality which we use throughout the course. The reasons for its

importance are:

� From an analytical point of view, many important problems can be

reduced to this form. Such reductions will be presented as we go along

during the rest of the course.

� The resulting computational problem can be e�ciently and com-

pletely solved by recently established numerical algorithms. While

this second issue is beyond the scope of this course, we will devote

some space in this section to explain some of the properties behind

this computational tractability.

A linear matrix inequality, abbreviated LMI, in the variable X is an

inequality of the form

F (X) < Q;

where

� the variable X takes values in a real vector space X ;
� the mapping F : X ! H n is linear;

� the matrix Q is in the set of Hermitian matrices H n :

The above is a strict inequality and F (X) � Q is a nonstrict linear matrix

inequality. Thus to determine whether an inequality is an LMI, we simply

see whether the above conditions are satis�ed. Let us consider some explicit

examples.
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Examples:

To start we note that every LMI can be written in a vector form. Suppose

that V1; : : : ; Vm is a basis for the vector space X . Then for any X in X we

have that there exist scalars x1; : : : ; xm such that

X = x1V1 + � � �+ xmVm:

If we substitute into the LMI F (X) < Q, and use the linearity of F , we

have

x1F (V1) + � � �+ xm(Vm) < Q:

Thus the variables are the scalars xk, and the F (Vk) are �xed Hermitian

matrices. In other words every LMI can be converted to the form

x1F1 + � � �+ xmFm < Q;

where x 2 Rm is the variable. While this coordinate form could also be

taken as a de�nition of an LMI, it is not how we typically encounter LMIs

in our course, and is often cumbersome for analysis.

Consider the inequality

A�XA�X < Q; (1.3)

where A 2 Rn�n ; Q 2 H n and the variable X is in Sn. If we de�ne

F (X) = A�XA�X;

then clearly this is a linear mapping Sn! Sn. Therefore we see that (1.3)

is an LMI.

Now look at the matrix inequality

A�XA+BY + Y �B� + T < 0;

where A 2 C n�n ; B 2 C n�m ; T 2 H n , and the variables X and Y are in Sn

and Rm�n respectively. This too is an LMI in the variables X and Y . To

see this explicitly let

Z := (X;Y ) 2 Sn� Rm�n

and de�ne F (Z) = A�XA+BY + Y �B�. Then F : Sn� Rm�n ! H n is a

linear map and the LMI can be written compactly as

F (Z) < �T:
With these examples and de�nition in hand, we will easily be able to

recognize an LMI. �

Here we have formulated LMIs in terms of the Hermitian matrices, which

is the most general situation for our later analysis. In some problems LMIs

are written over the space of symmetric matrices Sn, and this is the usual

form employed for computation. This change is inconsequential in regard
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to the following discussion, and furthermore in the exercises we will see

that the Hermitian form can always be converted to the symmetric form.

An important property of LMIs is that a list of them can always be

converted to one LMI. To see this suppose we have the two LMIs

F0(X0) < Q0 and F1(X1) < Q1

in the variables X0 and X1 in vector spaces X0 and X1 respectively. Then

this is equivalent to the single LMI

F (X) < Q;

where

X = (X0; X1) 2 X0 �X1 and Q =

�
Q0 0

0 Q1

�
and we de�ne the function F : X0 �X1 ! H n0+n1 by

F (X) =

�
F0(X0) 0

0 F1(X1)

�
:

Notice that if X0 and X1 are equal, or have common components then X

should be de�ned in a corresponding appropriate manner.

An important point, which will appear repeatedly in this course, is that

conditions that do not look like LMIs at �rst glance, can sometimes be

converted to them. The Schur complement given in Theorem 1.10 will be

very useful in this regard. We illustrate this by a simple example.

Example:

Let A 2 Rn�n , b; c 2 Rn , and d 2 R. The inequality

(Ax + b)�(Ax+ b)� c�x� d < 0

is not an LMI, since the expression is quadratic in the variable x. However

the Schur complement formula implies it is equivalent to�
c�x+ d (Ax+ b)�

Ax + b I

�
> 0:

Since the left hand side matrix now depends a�nely on x, the latter is an

LMI and can easily be expressed in the form F (x) < Q. �

As our course progresses we will �nd that many control problems can be

formulated in terms of �nding solutions to LMIs. More generally we will

have optimization problems with LMI constraints on the solution space.

This class of optimization is known as semide�nite programming. The

simplest semide�nite program is a decision problem, and is of the form:

Does there exist X 2 X , satisfying F (X) < Q?
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This is known as a feasibility problem and asks only whether there is any

element which satis�es the LMI. Computational aspects will be discussed

later, but we can already note an important property of the solution set.

Proposition 1.12. The set C := fX 2 X such that F (X) < Qg is convex
in X .

Proof . Suppose X1, X2 2 C, which means they satisfy F (X1) < Q and

F (X2) < Q. Consider any point X3 in L(X1; X2), namely X3 = �X1 +

(1� �)X2, for some value � 2 [0; 1]. Using linearity of the function F we

have

F (X3) = �F (X1) + (1� �)F (X2) < �Q+ (1� �)Q = Q:

The inequality follows from the fact that positive de�nite matrices are a

convex cone. Therefore X3 2 C. �

We remark that the above proposition does not say anything about the

LMI being feasible; indeed C could be empty.

We now turn to a more general semide�nite optimization problem.

minimize: c(X);

subject to: F (X) � Q and X 2 X ,
where c(X) is a linear functional on X . It is referred to as the linear

objective problem.

In this formulation we are being informal about the meaning of \mini-

mize"; in rigor we want to compute the in�mum, which may or may not

be achieved at a given X .

Example:

Let X = R2 ; �nd the in�mum of x1 subject to�
�x1 0

0 �x2

�
�
�
0 1

1 0

�
:

It is easy to show that the answer is zero, but this value is not achieved by

any matrix satisfying the constraint; notice this happens even in the case

of non-strict LMI constraints. �

Clearly the linear objective problem makes sense only if the LMI is feasi-

ble, which seems to imply that such problems are of higher di�culty than

feasibility. In fact, both are of very similar nature:

� In the exercises you will show how the linear objective problem can

be tackled by a family of feasibility questions.

� Conversely, the feasibility problem can be recast as the problem

J := inf t

subject to F (X)� tI � Q:
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The latter is a linear objective problem in the variables t 2 R andX 2
X , and the corresponding LMI constraint is automatically (strictly)

feasible. It is an easy exercise to see that J < 0 if and only if the LMI

F (X) < Q is feasible.

Given these relationships, we focus for the rest of the section on the linear

objective problem, with the assumption that the strict LMI F (X) < Q is

feasible. A pictorial view of the problem is given in Figure 1.7, for the case

X =

�
x1
x2

�
2 R2 :

The convex set depicted in the �gure represents the feasibility set C =

fX : F (X) � Qg for the linear objective problem; while we have drawn a

bounded set, we remark that this is not necessarily the case.

Y

Xn �
Xmin

�

Xn+1�C

Figure 1.7. Illustration of semide�nite programming

Since C(X) is a linear functional on R2 , it has the form

C(X) = Y �X = y1x1 + y2x2

for a �xed vector Y 2 R2 ; therefore the point Xmin that solves the problem

is the element of C with the most negative projection in the direction of Y ,

as depicted in Figure 1.7. Also the picture suggests that there are no other

local minima for the function in the set, namely for every other point there

is a \descent" direction. This property, fundamental to convex optimization

problems, is now stated precisely.

Proposition 1.13. Suppose X0 is a local minimum of the linear objective

problem, that is c(X0) � c(X) for every X 2 N (X0) \ C. Then X0 is the

global minimum of the problem over C.
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Proof . Let X1 be another point in C. Since C is convex, it contains the

line segment

L(X1; X0) = f�X1 + (1� �)X0; � 2 [0; 1]g:
Also by de�nition the neighborhood N (X0) will contain the points �X1 +

(1� �)X0 for su�ciently small �, say � 2 [0; �). Now the function f(�) =

c(�X1+ (1��)X0) is linear in � 2 [0; 1], and f(0) � f(�) for � 2 [0; �) by

hypothesis. Then f(�) is non-decreasing and f(0) � f(1), or equivalently

c(X0) � c(X1), which concludes our proof. �

The above property generalizes (see the exercises) to any convex opti-

mization problem, and plays a strong role in ensuring that these problems

can be solved globally, and not just locally, by numerical algorithms.

At this point the reader may be wondering about the nature of semidef-

inite programming algorithms; we will purposely stay away from any

detailed discussion of these methods, which would take us far a�eld, and

defer to the authoritative references provided at the end of the chapter.

However we will provide a few remarks aimed mainly at reinforcing the

idea that these problems are fundamentally tractable.

A �rst observation is that clearly the minimum, if it exists, must lie on

the boundary of the feasible set; thus one could think one restricting the

search to the boundary. This is in fact a popular alternative in the case of

linear programming, which corresponds to the case where the feasible set

is a polytope, the intersection of a �nite number of half-spaces. However

in the semide�nite programming problem the boundary is in general quite

complicated, and thus methods involving interior points are favored.

Going back to Figure 1.7, suppose we have a point Xn in our feasible

set; an immediate consequence is that we need only keep the set

fX 2 �C : c(X) � c(Xn)g
for our remaining search for the global minimum. This amounts to inter-

secting �C with a half-space; thus we can progressively shrink the feasibility

region to zero, provided we are able to successively generate a \good" new

feasible point Xn+1. Many optimization algorithms are based on this prin-

ciple; one of the simplest is the so-called ellipsoid algorithm that alternates

between \cutting" and overbounding the resulting set by an ellipsoid; Xn+1

would then be the center of such ellipsoid; for details see the references.

More e�cient methods for semide�nite programming are based on barrier

functions to impose the feasibility constraint. The idea is to minimize the

function

c(X) + ��(X) (1.4)

where � > 0, and the barrier function �(X) is convex and approaches

in�nity on the boundary of the feasible set. For a de�nition of a convex

function, and some basic properties see the exercises at the end of the
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chapter. Also you will show there that the function

�(X) = � log(det[Q� F (X)])

serves as a barrier function for the set C.
Provided we start from a feasible point, the minimization in (1.4) can

be globally solved by unconstrained optimization methods (e.g. Newton's

algorithm). By successively reducing the weight of the barrier function,

an iteration is produced which can be shown to converge to the global

minimum. The computational complexity of these algorithms has moderate

(polynomial) growth with problem size, the latter being characterized by

the dimensionality of the variable space X and of the constraint set H n . For

extensive details on this active area of optimization, as well as many other

alternative algorithms, the reader is encouraged to consult the references.

We have now completed our preliminary preparation for the course, and

are ready to investigate some control theory problems.

1.5 Exercises

1. Find a basis for Cm�n as a real vector space. What is the dimension

of this real vector space?

2. The spaces H n and Sn are both real vector spaces, �nd bases for each.

How are they related?

3. Determine the dimension of the set of homogeneous multinomials

P
[4]
3 . What is the general formula for the dimension of P

[n]
m .

4. We consider the mapping � de�ned in x1.1.4. Let a 2 P
[1]
3 be

a(x1; x2; x3) = x2, and consider � : P
[1]
3 ! P

[2]
3 , which is de�ned

by

(�p)(x1; x2; x3) = a(x1; x2; x3)p(x1; x2; x3):

Choose bases for P
[1]
3 and P

[2]
3 , and represent � as the corresponding

matrix [�].

5. Suppose A : V ! W . Let fAv1; : : : ; Avrg be a basis for ImA and

fu1; : : : ; ukg be a basis for kerA. Show that fv1; : : : ; vr; u1; : : : ; ukg
is a basis for V and deduce that dim(V) = dim(kerA) + dim(ImA).

6. Given a mapping A : V ! V show that both kerA and ImA are

A-invariant.

7. By direct calculation, show that given A 2 Cm�n and B 2 C n�m ,

the identity TrAB = TrBA holds. Use this to prove that the trace of

any square matrix is the sum of its eigenvalues.
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8. Prove that every linear functional F on Sn can be expressed as

F (X) = Tr(Y X) for some �xed Y 2 Sn.

9. Suppose A is a Hermitian matrix, and that �0 and �1 are two eigenval-

ues with corresponding eigenvectors x0 and x1. Prove that if �0 6= �1,

then x0 and x1 are orthogonal.

10. Show that if P � 0 and Q � 0, then Tr(PQ) � 0.

11. Suppose A 2 Cm�n has the singular value decomposition U�V �.

(a) Show that if x 2 spanfvk+1; : : : ; vng then jAxj � �k+1jxj.
(b) If A is n � n, let �1 � �2 � � � ��n be the diagonal elements of

�. Denote �(A) = �n. Show that A is invertible if and only if

�(A) > 0, and in that case

��(A�1) =
1

�(A)
:

(c) If A 2 H n , then ���(A) I � A � ��(A) I .

12. Suppose that  > 0 and that X 2 Rn�m .

(a) Show that ��(X) �  if and only if X�X � 2;

(b) Convert the constraint ��(X) �  to an equivalent LMI

condition.

13. The spectral radius of a matrix M 2 C n�n is de�ned as

�(M) := maxfj�j such that � is an eigenvalue of Mg:
(a) Show that �(M) � ��(M) and �nd both numbers for

M =

26664
0 1 0

. . .
. . .

1

0 0

37775
(b) Show that

�(M) � inf
D invertible

��(DMD�1)

(c) Prove that there is equality in (b). Hint: use the Jordan form.

(d) Deduce that �(M) < 1 if and only if the set of LMIs

X > 0; M�XM �X < 0

is feasible over X 2 H n .

14. Consider a real LMI given by

�F (X) < �Q;

where the linear map �F : X ! S�n, �Q 2 S�n, and X is a real vector

space. Show that any LMI of the standard form given in x1.4 with
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respect to the Hermitian matrices H n , can be converted to a real LMI

with �n = 2n. Hint: �rst �nd an condition for a matrix A 2 H n to be

positive de�nite, in the form of an LMI on Re(A) and Im(A).

15. In x1.4 two types of LMI problems were introduced, the feasibility

problem and the linear objective problem. Show how the feasibility

problem can be used with iteration to solve the latter.

16. Another type of LMI optimization problem is the so-called generalized

eigenvalue minimization problem, which is

minimize: ;

subject to: F0(X) + F1(X) < Q0 + Q1 and X 2 X ,
where F1 and F2 are linear mapping from X to Sn, and Q0, Q1 2 Sn.

Show that the linear objective problem can be reformulated in this

format. Further show that this problem can be solved by iteration

using the feasibility problem.

17. Let C be a convex set in a real vector space X . A function � : C ! R

is said to be convex if it satis�es

�(�x1 + (1� �)x2) � ��(x1) + (1� �)�(x2)

for every x1, x2 in C and every � 2 [0; 1]. The minimization of such

a function is called a convex optimization problem. As an important

example, the function �(x) = � log(x) is convex in (0;1). Clearly,

any linear function is convex.

(a) Prove that for a convex function, every local minimum is a global

minimum.

(b) Show a function � is convex if and only if for any x1, x2 in C,
the function f(�) := �(�x1 + (1� �)x2) is convex in � 2 [0; 1].

(c) Prove that �(X) = � log(det(X)) is convex in the set of positive

matrices fX > 0g. Hint: use the identity

�X1 + (1� �)X2 = X
1
2

2

�
I + �X

� 1
2

2 (X1 �X2)X
� 1

2

2

�
X

1
2

2

and express det(�X1+(1��)X2) in terms of the eigenvalues of

the Hermitian matrix H := X
� 1

2

2 (X1 �X2)X
� 1

2

2 .

(d) Deduce that if F : X ! H n is linear, � log(det[Q� F (X)]) is a

barrier function for the set C = fX 2 X : F (X) < Qg.

Notes and references

Given its ubiquitous presence in analytical subjects, there are many ex-

cellent books on linear algebra at the introductory level; one choice is for
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example [128]. For an advanced treatment from a geometric perspective

the reader is referred to [51].

For many more details on convexity see the standard reference [109].

Two excellent sources for matrix theory are [58] and the companion work

[59]. For information and algorithms for computing with matrices see [49].

LMIs have a long history as an analytical tool, but it is only with re-

cent advances in semide�nite programming that they have acquired a more

central role in computation. These advances have been largely motivated

by the pioneering work [85] on interior point methods for general convex

optimization problems. Semide�nite programming is still undergoing rapid

development; a recent survey is [133]. Also see [13] for an introduction to

LMI optimization with many examples from control theory.

Reference [79] is a more general work on optimization primarily aimed

at in�nite dimensional vector spaces.
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State Space System Theory

We will now begin our study of system theory. This chapter is devoted to

examining one of the building blocks used in the foundation of this course,

the continuous time, state space system. Our goal is to cover the fundamen-

tals of state space systems, and we will consider and answer questions about

their basic structure, controlling and observing them, and representations

of them.

The following two equations de�ne a state space system.

_x(t) = Ax(t) +Bu(t); with x(0) = x0 (2.1)

y(t) = Cx(t) +Du(t);

where u(t); x(t) and y(t) are vector valued functions, and A;B;C and D

are matrices. We recall that the derivative _x(t) is simply the vector formed

from the derivatives of each scalar entry in x(t). The �rst of the above

equations is called the state equation and the other the output equation.

The variable t � 0 is time and the function u(t) is referred to as the system

input. The functions x(t) and y(t) are called the state and output of the

system respectively, and depend on the input.

For later reference we de�ne the dimensions of the vectors by

u(t) 2 Rm ; x(t) 2 Rn and y(t) 2 Rp :

Thus A is an n�nmatrix; the matrix B is n�m; matrices C andD are p�n
and p �m respectively. We will restrict ourselves to real matrices during

the chapter, however all the results we prove hold for complex matrices as

well. Notice that the system given above is a �rst order linear di�erential

equation with an initial condition, and therefore has a unique solution.
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The state space formulation above is very general because many systems

of higher order linear di�erential equations can be reformulated in this

way. This generality motivates our study of state space systems. Before

considering this system as a whole we will examine simpler versions of it

to successively build our understanding.

2.1 The autonomous system

In this short section we will develop some intuition about the state equation

by considering one of its simpli�cations. This will lead us to introducing

and studying the generalization of the exponential function to matrices, a

function we will �nd repeatedly useful in the chapter.

Let us focus on the autonomous system

_x(t) = Ax(t); with x(0) = x0 : (2.2)

This system is a special case of (2.1) in which there are no inputs and no

outputs. The state function x(t), for t � 0, is completely speci�ed by the

initial condition x(0). The immediate question that comes to mind is, can

we explicitly state the solution to this di�erential equation?

Consider �rst the case where x(t) is a scalar, namely n = 1. Then A is

equal to some scalar a. Thus we have that

x(t) = eatx(0)

is the unique solution for x(t). There are a number of equivalent ways to

de�ne the meaning of the scalar function eat, and one of these is using its

power or Taylor series expansion.

We follow this lead for the multivariable case when n > 1 and make the

de�nition: the matrix exponential eM of a square matrix M is de�ned to

be the matrix sum of the power series

eM = I +M + 1
2!
M2 + 1

3!
M3 + 1

4!
M4 + � � � :

It is not di�cult to show that eM is well-de�ned; namely the above series

always converges. Notice that if M is a scalar then this de�nition agrees

with the familiar power series expansion of the scalar exponential function.

Our main focus will be the time dependent function

eAt = I +At+ 1
2!
A2t2 + 1

3!
A3t3 + � � �

which is de�ned for every t. The following are some basic properties of the

matrix exponential.

(a) e0 = I , where 0 denotes the zero element in Rn�n ;

(b) eM
�

= (eM )�;

(c) d

dt
eAt = AeAt = eAtA;
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(d) If the square matrices M and N commute, that is MN = NM , then

the relationship eM+N = eMeN holds.

The �rst three properties follow immediately from the de�nition, for the

last one see the exercises at the end of the chapter. We will now illustrate

the matrix types which result from this de�nition by looking at two special

cases; by using the Jordan form, these two examples can be used to specify

the exponential of any matrix.

Examples:

Our �rst example pertains to the case where A is a diagonalizable matrix,

namely a similarity transformation T exists such that

T�1AT = � =

264�1 0
. . .

0 �n

375 ; (2.3)

holds where �k are the eigenvalues of A. This is a convenient transformation

because, for k � 0, we have Ak = T�kT�1. Therefore

eAt = T
�
I +�t+ 1

2!
�2t2 + � � �

�
T�1 = T

264e
�1t 0

. . .

0 e�nt

375T�1:
Thus we see that the matrix exponential consists of linear combinations of

exponentials whose exponents are the eigenvalues of the matrix.

The second case we consider is where A is exactly a Jordan block, and

so has the form

A =

26664
� 1 0

. . .
. . .

1

0 �

37775 = �I +N; (2.4)

where N is the matrix with ones above the diagonal and zeros in its re-

maining entries. An interesting and useful feature of N is that its powers

are easily computed. In particular its square is

N2 =

2666664
0 0 1 0

. . .
. . .

. . .

0 0 1

0 0

0 0

3777775
and the successive powers of N have analogous structure, with the diagonal

of ones shifting upwards, until eventually we �nd Nn = 0. That is N is

nilpotent of order n.
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This feature of N can be exploited to compute the exponential eAt. Since

the matrices �I and N commute we can invoke property (d) above to �nd

that

eAt = e�IteNt = e�t
�
I +Nt+ 1

2!
N2t2 + � � � 1

(n�1)!N
n�1tn�1

�
This gives us the �nal result

eAt = e�t

26666664
1 t t

2

2
� � � t

n�1

(n�1)!
. . .

. . .
. . .

...

1 t t
2

2

0 1 t

0 1

37777775 :

So we have shown that the matrix exponential of a single Jordan block

consists of functions of the form t
k

k!
e�t. �

Having gained some familiarity with the matrix exponential we now re-

turn to the di�erential equation (2.2). Using the above properties of the

matrix exponential, it follows immediately that the unique solution to this

autonomous equation is given by

x(t) = eAtx(0); for t � 0.

One of the main properties of interest for such a system is that of stability.

We say that the system described by (2.2) is internally stable if, for every

initial condition x(0) 2 Rn , the limit

x(t)
t!1�! 0 holds:

This limit simply says that each scalar entry of x(t) tends to zero with

time. In the exercises you will show that the system is internally stable if

and only if each eigenvalue � of A satis�es

Re� < 0;

namely they are all in the left half of the complex plane. A matrix that

has this property is called a Hurwitz matrix. Thus we have the following

summarizing result.

Proposition 2.1. The autonomous system in (2.2) is internally stable if

and only if A is Hurwitz.

At this point we have covered all the key properties of the autonomous

state equation, and saw that these follow directly from those of the matrix

exponential function. We are now ready to consider systems systems with

inputs, controlled systems.



2.2. Controllability 61

2.2 Controllability

This section is the most important of the chapter as it contains machinery

and concepts that are crucial to the rest of the course. The problem we

intend to pose and answer is a fundamental question about the control of

state space systems. We will study the equation

_x(t) = Ax(t) +Bu(t); with x(0) = 0; (2.5)

which is the state equation from (2.1). Notice that for now we set the initial

condition of the state to zero. Thus it is easy to verify that the solution to

this equation is

x(t) =

Z
t

0

eA(t��)Bu(�)d�; for t � 0.

The integrand in the equation is a vector, so each scalar entry of x(t) is just

equal to the integral of of the corresponding scalar entry of eA(t��)Bu(�).
Our �rst objective will be to determine what states can be reached by

manipulating the input u(t). In other words how much control do we have

over the values of x(t) through choice of the function u? We will �nd that

this question has a surprising answer.

2.2.1 Reachability

We begin our study by asking, given a �xed time t, what are the possible

values of the state vector x(t)? Or asked another way: given a vector in Rn

is it possible to steer x(t) to this value by choosing an appropriate input

function u(t)? We will answer this question completely, and will �nd that

it has a surprisingly simple answer. To do this we require three related

concepts.

Set of reachable states

For a �xed time t > 0, let Rt denote the states that are reachable at time

t by some input function u. Namely Rt is the set

Rt := f� 2 Rn : there exists u such that x(t) = �g :
This de�nition is made respecting the state equation given in (2.5), where

the initial condition is zero. It turns out that Rt is a subspace of R
n . This is

a simple consequence of the linearity of (2.5), which we leave as an exercise.

Controllable subspace

Next we de�ne a subspace associated with any state equation. Given the

state equation _x(t) = Ax(t) +Bu(t) we call the matrix�
B AB A2B � � � An�1B

�
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the associated controllability matrix. Equivalently we say it is the con-

trollability matrix of the matrix pair (A; B). Recall that A is an n � n

matrix, and notice that the dimension n plays an important role in the

above de�nition.

Associated with the controllability matrix is the controllability subspace,

denoted CAB , which is de�ned to be the image of the controllability matrix.

CAB := Im
�
B AB � � � An�1B

�
:

Thus we see that CAB , like Rt above is a subspace of R
n . When dimension

of CAB is n, or equivalently the controllability matrix has the full rank of n,

we say that (A; B) is a controllable pair. In the same vein we refer to a state

space system as being controllable when the associated matrix pair (A; B)

is controllable. We shall soon see the motivation for this terminology.

Controllability gramian

Here we de�ne yet another object associated with the state equation,

a matrix which depends on time. For each t > 0, the time dependent

controllability gramian is de�ned to be the n� n matrix

Wt :=

Z
t

0

eA�BB�eA
�
�d� :

Having de�ned the set of reachable states, the controllability subspace

and the controllability gramian we can now state the main result of this

section. It will take a number of steps to prove.

Theorem 2.2. For each time t > 0 the set equality

Rt = CAB = ImWt holds:

This theorem says that the set of reachable states is always equal to the

controllability subspace, and is also equal to the image of the controllability

gramian. Since the controllability subspace CAB is independent of time so

is the set of reachable states: if a state can be reached at a particular time,

then it can be reached at any t > 0, no matter how small. According to

the theorem, if (A; B) is controllable then Rt is equal to the entire state

space Rn ; that is all the states are reachable by appropriate choice of the

input function u.

Let us now move on to proving Theorem 2.2. We will accomplish this by

proving three lemmas, showing sequentially that

� Rt is a subset of CAB ;
� CAB is a subset of ImWt;

� ImWt is a subset of Rt.

These facts will be proved in Lemmas 2.6, 2.8 and 2.9 respectively.
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Before our �rst result we require a fact about matrices known as the

Cayley-Hamilton theorem. Denote the characteristic polynomial of matrix

A by charA(s). That is

charA(s) := det(sI �A) =: sn + an�1sn�1 + � � � a0;
where det(�) denotes the determinant of the argument matrix. Recall that
the eigenvalues of A are the same as the roots of charA(s). We now state

the Cayley-Hamilton theorem.

Theorem 2.3. Given a square matrix A the following matrix equation is

satis�ed

An + an�1An�1 + an�2An�2 + � � �+ a0I = 0;

where ak denote the scalar coe�cients of the characteristic polynomial of

A.

That is the Cayley-Hamilton theorem says a matrix satis�es its own

characteristic equation. In shorthand notation we write

charA(A) = 0:

We will not prove this result here but instead illustrate the idea behind the

proof, using the example matrices considered above.

Examples:

First consider the case of a diagonalizable matrix A as in (2.3). Then it

follows that

charA(A) = T charA(�)T
�1 = T

264charA(�1) 0
. . .

0 charA(�n)

375T�1:
Now by de�nition each of the eigenvalues is a root of charA(s), and so we

see in this case charA(A) = 0.

Next we turn to the case of a Jordan block (2.4). Clearly in this case A

has n identical eigenvalues, and has characteristic polynomial

charA(s) = (s� �)n :

Now it is easy to see that charA(A) = 0 since

charA(A) = (A� �I)n = Nn = 0;

where N is the nilpotent matrix de�ned in the earlier examples.

The general case of the Cayley-Hamilton theorem can be proved using

the ideas from these examples and the Jordan decomposition, and you are

asked to do this in the exercises. �

The signi�cance of the Cayley-Hamilton theorem for our purposes is

that it says the matrix An is a linear combination of the matrix set
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fAn�1; An�2; : : : ; A; Ig. Namely
An 2 spanfAn�1; An�2; : : : ; A; Ig:

More generally we have the next proposition.

Proposition 2.4. Suppose k � n. Then there exist scalar constants

�0; : : : ; �n�1 satisfying

Ak = �0I + �1A+ � � �+ �n�1An�1

We now return for a moment to the matrix exponential and have the

following result.

Lemma 2.5. There exist scalar functions �0(t); : : : ; �n�1(t) such that

eAt = �0(t)I + �1(t)A+ � � �+ �n�1(t)An�1 ;

for every t � 0.

The result says that the time dependent matrix exponential eAt can be

written as a �nite sum, where the time dependence is isolated in the scalar

functions �k(t). The result is easily proved by observing that, for each t � 0,

the matrix exponential has the expansion

eAt = I +At+
(At)2

2!
+
(At)3

3!
+ � � � :

The result then follows by expanding Ak, for k � n, using Proposition 2.4.

We are ready for the �rst step in the proof of our main result, which

is to prove that the reachable states are a subset of the image of the

controllability matrix.

Lemma 2.6. The set of reachable states Rt is a subset of the controllability

subspace CAB.
Proof . Fix t > 0 and choose any reachable state � 2 Rt. It is su�cient to

show that � 2 CAB . Since � 2 Rt there exists an input function u such that

� =

Z
t

0

eA(t��)Bu(�)d� :

Now substitute the expansion for the matrix exponential from Lemma 2.5

to get

� =

Z
t

0

�0(t� �)Bu(�)d� + � � �+An�1
Z

t

0

�n�1(t� �)Bu(�)d� :

Writing this as a product we get

� =
�
B AB � � � An�1B

� 264
R
t

0
�0(t� �)u(�)d�

...R
t

0
�n�1(t� �)u(�)d�

375 :
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The right most factor is a vector in Rnm , and so we see that � is in the

image of the controllability matrix. �

Next in our plan is to show that CAB is contained in the image of Wt.

Again we require some preliminaries. Given a subspace X we de�ne its

orthogonal complement X? by

X? = fx 2 Rn : x�y = 0; for all y 2 Xg:
It is routine to show that the dimension of X? is n minus the dimension

of X . We have the following elementary result which can be proved as an

exercise.

Proposition 2.7. Given any matrix W the subspace equality

(ImW )? = kerW � holds:

We now prove the next step in the demonstration of Theorem 2.2.

Lemma 2.8. The controllability subspace satis�es

CAB � ImWt :

Proof . We show equivalently that

C?
AB

� (ImWt)
? :

From Proposition 2.7 we have that

(ImWt)
? = kerW �

t
= kerWt ;

where the latter equation is true since the controllability gramian is

symmetric. So we need to show that if � 2 kerWt then � 2 C?AB .
Let � 2 kerWt and thus we have

��Wt� = 0 :

Applying this to the de�nition of Wt we have

0 = ��
�Z

t

0

eA�BB�eA
�
�d�

�
� =

Z
t

0

(��eA�B)(B�eA
�
� �)d� :

Let y(�) = B�eA
�
�� and the last equation saysZ

t

0

y�(�)y(�)d� = 0 :

Thus it follows that

y�(�) = ��eA
�
�B = 0

for each 0 � � � t. Hence we have that the right-sided derivatives at zero

satisfy

dky�

d�k

����
�=0

= 0
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for all k � 0. Now

dky�

d�k

����
�=0

= ��AkB ;

and so it follows that

��
�
B AB � � � An�1B

�
= 0;

where we have written n vector equations as a single matrix equation. The

latter equation says that the vector � is orthogonal to all vectors in the

image of the controllability matrix. This means � is in C?
AB

as required. �

To �nish our proof of Theorem 2.2 we complete the planned chain of

containments proving that any element in the image of the gramian is

necessarily a reachable state.

Lemma 2.9. The image ImWt � Rt, where Rt is the set of reachable

states.

Proof . Select any time t > 0 and � 2 ImWt. Then by de�nition there

exists � in Rm so that

� =Wt� :

Now de�ne

u(�) = B�eA
�(t��)�; for 0 � � � t :

Then the solution to _x = Ax+Bu; x(0) = 0 at time t is

x(t) =

Z
t

0

eA(t��)Bu(�)d� =
Z

t

0

eA(t��)BB�eA
�(t��)�d� (2.6)

=

Z
t

0

eA�BB�eA
�
�d� � =Wt� = � : (2.7)

By de�nition this means that � is indeed in the set of reachable states. �

Thus we have successfully proved the theorem of this section, which says

that Rt = CAB = ImWt. Since CAB is the image of the controllability

matrix this gives us a simple way to compute the reachable states of the

system. Also notice that in the proof of Lemma 2.9 we constructed an

explicit input u for reaching a given state in the set of reachable states.

Summarizing, we have shown precisely which states are reachable and how

to reach them.

2.2.2 Properties of controllability

Recall that we said the pair (A; B) is controllable if CAB has maximum

dimension n, namely all states are reachable. This is an important situation
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and we now investigate this special case further. Let us now return to the

full state space system of (2.1) which is

_x(t) = Ax(t) +Bu(t); x(0) = x0

y(t) = Cx(t) +Du(t):

This set of equations speci�es a relationship between the input u and the

output y. It is natural to ask whether this is the unique set of equations of

this form which relate u to y. The answer is on the contrary, there are many

state-space systems which provide the same relationship. We elaborate on

this point later, but for the moment we will exhibit a family of state-space

systems obtained from the given one by a change of coordinates in the

state. By de�ning

~x(t) = Tx(t);

where T 2 Rn�n is a similarity transformation, we have

_~x(t) = T _x(t) = T (Ax(t) +Bu(t))

= TAT�1~x(t) + TBu(t) ;

which has the initial condition ~x(0) = Tx(0). Similarly we have that

y(t) = Cx(t) +Du(t) = CT�1~x(t) +Du(t) :

Thus we see that a similarity transformation de�nes a new state and thus

a new realization for the same input-output relationship. Summarizing we

have that any similarity transformation de�nes a mapping

(A;B;C;D) 7! ( ~A; ~B; ~C; ~D);

from one system realization to another by ~A = TAT�1, ~B = TB, ~C =

CT�1 and ~D = D. Notice that D is una�ected by a state transformation.

We have the �rst property of controllability now stated, which says that

systems remain controllable under state transformations.

Proposition 2.10. The pair (A;B) is controllable, if and only if, (TAT�1; TB)
is controllable.

Proof . The controllability matrix of (TAT�1; TB) is�
TB (TAT�1)TB � � � (TAT�1)n�1TB

�
= T

�
B AB � � � An�1B

�
Since T is a similarity transformation the rank of this matrix is clearly

equal to that of �
B AB � � � An�1B

�
;

which of course is the controllability matrix associated with the matrix

pair (A;B). Thus either of these controllability matrices has rank n exactly

when the other does. �
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In the language of subspaces the above result says

C ~A ~B = TCAB;

where ~A = TAT�1 and ~B = TB. This should be readily clear from the

proof and the de�nition of the controllable subspace.

Recall the de�nition of a subspace being invariant to a matrix: supposeW
is a subspace of Rn and A is an n�n matrix, then we sayW is A-invariant

if

AW �W :

Also recall that if W is r dimensional and A-invariant, then there exists a

similarity transformation T such that

TAT�1 =
�
~A11

~A12

0 ~A21

�
where ~A11 2 Rr�r and

TW = Im

�
Ir
0

�
:

We use this de�nition and the latter fact in the next two very important

results.

Proposition 2.11. Suppose A 2 Rn�n and B 2 Rn�m . Then the

controllable subspace CAB is A-invariant.

Proof . We need to show that ACAB � CAB. Using the de�nition of CAB
we have

ACAB = A Im
�
B AB � � � AnB

�
= Im

�
AB A2B � � � AnB

�
:

Now by the Cayley-Hamilton theorem we see that

Im
�
AB A2B � � � AnB

�
� Im

�
B AB � � � An�1B

�
and therefore the result follows. �

An immediate consequence of this proposition and the preceding discussion

is the following.

Theorem 2.12. Given a matrix pair (A;B) with the dimension dim(CAB) =
r. Then there exists a similarity transformation T such that

(a) The transformed pair has the form

TAT�1 =
�
~A11

~A12

0 ~A22

�
and TB =

�
~B1

0

�
;

where ~A11 2 Rr�r and ~B1 2 Rr�m ;
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(b) The transformed controllable subspace is

TCAB = Im

�
Ir
0

�
� Rn ;

(c) The pair ( ~A11; ~B1) is controllable.

The �rst two parts of the theorem are essentially complete since we already

know that CAB is invariant to A, and that ImB � CAB holds by de�nition.

Part (c) follows by evaluating the rank of the controllability matrix for the

transformed system. We leave this as an exercise. When a matrix pair is

in the form given in (a) of the theorem, with (c) satis�ed we say it is in

controllability form.

We now summarize the procedure for transforming a pair (A;B) into

this form.

General procedure for controllability form

(a) Find a basis fv1; : : : ; vrg in Rn for CAB ;

(b) Augment this basis to get fv1; : : : ; vng a complete basis for Rn ;

(c) De�ne T�1 = [v1; : : : ; vn] and set

~A = TAT�1 and ~B = TB ;

(d) Partition these matrices as

~A =

�
~A11

~A12

0 ~A22

�
and ~B =

�
~B1

0

�
:

It is important to understand exactly why the above procedure works, as it

collects a number of key ideas. We now move on to examine the implications

of the controllability form.

2.2.3 Stabilizability and the PBH test

When a system is put in controllability form, as the name suggests, the

controllable and uncontrollable parts of the system are isolated. Let see

this explicitly. Consider the state equation

_x(t) = Ax(t) +Bu(t); x(0) = x0 :

De�ne a new state ~x(t) = Tx(t), where T is a similarity transformation that

transforms the system to controllability form. Thus the new state equations

are

_~x(t) =

�
_~x1(t)
_~x2(t)

�
=

�
~A11

~A12

0 ~A22

� �
~x1(t)

~x2(t)

�
+

�
~B1

0

�
u(t);
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with the initial condition given by

~x(0) =

�
~x1(0)

~x2(0)

�
= Tx(0):

Notice that ~x2(t) evolves according to the equation

_~x2(t) = ~A22~x2(t) ;

which only depends on the initial condition ~x2(0), and is entirely inde-

pendent of both ~x1(0) and the input u. Therefore ~x2 is said to be the

uncontrollable part of the system. Now suppose that the matrix ~A22 is not

Hurwitz, then there exists an initial condition ~x2(0) such that

~x2(t) does not tend to zero as t!1 :

Namely there exists an initial condition x(0) so that no matter what u

is, the state x(t) does not tend to zero as the time t tends to in�nity.

Conversely, it turns out that if ~A22 above is Hurwitz then for every initial

condition x(0), there exists an input u such that x(t) tends asymptotically

to zero. This latter fact will become clear to us soon, and motivates the

following de�nition.

De�nition 2.13. Suppose (A;B) is a matrix pair. If ~A22 in a controlla-

bility form is Hurwitz, then we say the pair is stabilizable.

Thus a matrix pair is said to be stabilizable if for every initial condition it

is possible to �nd an input that asymptotically steers the state x(t) to the

origin; clearly this is the weakest form of stability for a controlled system.

If the matrix pair is not stabilizable there exists an initial condition so that

irrespective of u(t), the state function x(t) does not tend to the origin.

So far the only way we have to determine stabilizability of a pair (A;B)

is to convert the system to controllability form. This is both inconvenient

and unnecessary, and our goal is now to develop a more sophisticated test.

To do this we �rst develop an alternate method for checking controllability,

the Popov-Belevitch-Hautus or PBH test. The test is stated below.

Theorem 2.14. The pair (A;B) is controllable if and only if, for each

� 2 C , the rank condition

rank
�
A� �I B

�
= n holds :

Proof . First notice that this condition need only be satis�ed at the eigen-

values of A, since the rank of A� �I is n otherwise.

We �rst prove \only if", by a contrapositive argument. Suppose � is an

eigenvalue of A and

rank
�
A� �I B

�
< n :

Then there exists a nonzero vector x such that

x�
�
A� �I B

�
= 0 :
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Thus we have that both

x�A = �x� and x�B = 0 hold.

From the former it follows that

x�A2 = �2x�

or more generally x�Ak = �kx� for each k � 1. Hence

x�
�
B AB � � � An�1B

�
= 0 ;

and we see (A;B) is not controllable.

Now we prove \if", again using the contrapositive. Suppose (A;B) is not

controllable, then by Theorem 2.12 there exists a similarity transformation

such that

~A = TAT�1 =
�
~A11

~A21

0 ~A22

�
and

�
~B1

0

�
;

where the dimensions of ~A22 are nonzero. Let � be an eigenvalue of ~A22

and we see that

rank
�
~A� �I ~B

�
< n :

Therefore
�
A� �I B

�
has rank less than n since�

A� �I B
�
= T

�
~A� �I B

� �T�1 0

0 I

�
:

This completes the contrapositive argument.

�

In view of this theorem we say that an eigenvalue � of matrix A is

controllable if

rank
�
A� �I B

�
= n ;

and so every eigenvalue of A is controllable, if and only if, (A;B) is a con-

trollable pair. Thinking back on matrix ~A in the above proof, we see that
~A11 corresponds to the controllable states, whereas all the eigenvalues of
~A22 are uncontrollable. Note that the eigenvalues of ~A11 and ~A22 need not

be distinct. From this discussion and the proof of Theorem 2.14 the next

result follows readily.

Corollary 2.15. The matrix pair (A;B) is stabilizable if and only if the

condition

rank
�
A� �I B

�
= n holds for all � 2 �C+ :

This corollary states that one need only check the above rank condition at

the unstable eigenvalues of A, that is those in the closed right half-plane
�C+ . This is a much simpler task than determining stabilizability from the

de�nition.
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2.2.4 Controllability from a single input

This section examines the special case of a pair (A;B) where B 2 Rn�1 .
That is our state space system has only a single scalar input. This investi-

gation will furnish us with a new system realization which has important

applications.

A matrix of the form26664
0 1 0

. . .
. . .

0 0 1

�a0 �a1 �an�1

37775
is called a companion matrix, and has the useful property that its

characteristic polynomial is

sn + an�1sn�1 + � � �+ a0 :

The latter fact is easily veri�ed. We now prove an important theorem which

relates single input systems to companion matrices.

Theorem 2.16. Suppose (A; B) is a controllable pair, and B is a column

vector. Then there exists a similarity transformation T such that

TAT�1 =

26664
0 1 0

. . .
. . .

0 0 1

�a0 �a1 �an�1

37775 and TB =

26664
0
...

0

1

37775 :

The theorem states that if a single input system is controllable, then it can

be transformed to the special realization above, where A is in companion

form and B is the �rst standard basis vector. This is called the controllable

canonical realization, and features the A-matrix in companion form with

the B-matrix the n-th standard basis vector of Rn . To prove this result we

will again use the Cayley-Hamilton theorem.

Proof . Referring to the characteristic polynomial of A and invoking the

Cayley-Hamilton theorem we get

An + an�1An�1 + � � �+ a0I = 0 :

Post multiplying this by B gives

AnB = �a0B � � � � � an�1An�1B :
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From this equation, keeping in mind that B is a column vector, it is easy

to verify that

A
�
B � � � An�1B

�
=
�
B AB � � � An�1B

�| {z }
P

266664
0 0 �a0
1

. . . �a1

. . . 0
...

0 1 �an�1

377775
| {z }

M

Note that P is both square and nonsingular. From the last equation we

have

P�1AP =M ;

and also that

B =
�
B AB � � � An�1B

�
26664
1

0
...

0

37775 :

Therefore we see

P�1B =

26664
1

0
...

0

37775 :

Let us hold these forms in abeyance for the moment, and introduce two

new matrices.

~A :=

26664
0 1 0

. . .
. . .

0 0 1

�a0 �a1 �an�1

37775 and ~B =

26664
0
...

0

1

37775 :

These are the matrices to which we want to transform. De�ne

~P :=
�
~B ~A ~B � � � ~An�1 ~B

�
:

Now ( ~A; ~B) is controllable; to see this simply write out the controllability

matrix. Therefore since ~A has the same characteristic polynomial as A, we

can use the same argument already followed to show that

~P�1 ~A ~P =M and ~P�1 ~B =

26664
1

0
...

0

37775 :
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Returning to our expressions earlier we have that

P�1AP = ~P�1 ~A ~P and P�1B = ~P�1 ~B:

Set T = ~PP�1 and we arrive at the desired result of

TAT�1 = ~A and TB = ~B :

�

We are now ready to leave this section and move on to one of the most

common types of closed-loop control. The decomposition given here will

have a direct role in the next section. Realize that the proof above provides

us with an explicit procedure for putting a matrix pair in the controllable

canonical form.

2.3 Eigenvalue assignment

In this section we consider a state space problem associated with a special

type of closed-loop control called state feedback. Take the state equation

_x(t) = Ax(t) +Bu(t); x(0) = x0

and suppose we use the feedback law u(t) = Fx(t) where F is a �xed matrix

in Rm�n . Then the state equation becomes

_x(t) = (A+BF )x(t); x(0) = x0 :

This is an autonomous system whose behavior depends only on A + BF .

Thus to control the system we might wish to stabilize it, meaning that

A+BF is Hurwitz. More generally we could try to specify the eigenvalues

of A+BF exactly by selecting F , thus achieving certain dynamical charac-

teristics. The question we answer in this section is, when are the eigenvalues

of A + BF freely assignable through choice of F . We answer this by �rst

treating the single input case, and then tackling the more challenging multi

input case second.

2.3.1 Single input case

Here we consider the case where B 2 Rn�1 . Suppose (A;B) is controllable,
then by Theorem 2.16 we know there exists a similarity transformation

such that

~A =

�
0 I

�a0
�
�a1 � � � �an�1

�
�

and ~B =

26664
0
...

0

1

37775 :
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Let E = f�0; : : : ; �n�1g be the desired set of eigenvalues for A+BF . Since

the matrix A + BF is real we necessarily restrict E to be a set which is

symmetric with respect to the real line; namely if � is in E , then so is the

complex conjugate of �. Next let ~F =
�
~F0 � � � ~Fn�1

�
where each ~Fk is a

real scalar to be chosen. Then

~A+ ~B ~F =

�
0 I

�a0 + ~F0
�
�a1 + ~F1 � � � �an�1 + ~Fn�1

�
�
:

Now this matrix is in companion form and so its characteristic polynomial

is

sn + (an�1 � ~Fn�1)sn�1 + � � �+ (a0 � ~F0) :

Clearly by appropriate choice of the scalars ~Fk we can arrange for the

characteristic polynomial to be equal to

(s� �0)(s� �1) � � � (s� �n�1);

which is a polynomial with real coe�cient since E is symmetric. Note that

the choice of these scalars ~Fk is unique. Thus we have assigned the eigen-

values of ~A + ~B ~F to be the set E . Recalling that ~A is related to A by a

similarity transformation we have

T ( ~A+ ~B ~F )T�1 = A+B( ~FT�1) =: A+BF

where F is de�ned to by ~FT�1. Therefore the eigenvalues of A+BF have

been successfully assigned. We have the following general result.

Theorem 2.17. Suppose B 2 Rn�1 . The eigenvalues of A + BF can be

arbitrarily assigned if and only if (A;B) is controllable.

That controllability ensures the assignability of eigenvalues can be seen

from the preceding discussion. We leave the \only if" part of the proof as

an exercise. Hint: transform the system to controllability form. We are now

ready to deal with the harder proof of the multi input case.

2.3.2 Multi input case

In this section we treat the case of eigenvalue assignment when B 2 Rn�m

and m � 1; so far we have only looked at this problem with m = 1. As

we showed for the single input case, it turns out that (A;B) controllable

means we can assign A+BF freely. Also if (A;B) is not controllable, then

some eigenvalues of A+BF remain �xed no matter how we choose F .

The �rst step to proving the general multi input result is the following

key lemma.

Lemma 2.18. Suppose (A;B) is controllable. If B1 2 Rn�1 is any nonzero

column of B, then there exists an F1 such that the matrix pair (A+BF1; B1)

is controllable.
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The proof of this lemma is rather involved, and so we show its application

in the following major theorem �rst. This theorem is called the eigenvalue

or pole placement theorem.

Theorem 2.19. The eigenvalues of A + BF are freely assignable, by

choosing F 2 Rm�n , if and only if the pair (A;B) is controllable.

Proof . To show \if" start by choosing any nonzero column of B. Now by

Lemma 2.18 there exists a matrix F1 such that (A+BF1; B1) is controllable.

Having chosen such an F1 we can invoke Theorem 2.17 to ensure the

existence of a matrix F2 such that

(A+BF1) +B1F2

has any desired eigenvalue assignment. Finally using the de�nition of B1,

choose a matrix F such that A+BF equals (A+BF1) +B1F2 above.

As with the single input case we leave the \only if" part of the proof as

an exercise.

�

We remark here that unlike the single input case, in the multi input case

the state feedback matrix F may not be unique. Having established that

Lemma 2.18 is indeed worth proving, we are ready to proceed to its proof.

Proof of Lemma 2.18. The proof revolves around the arti�cial discrete

time system

xk+1 = Axk +Buk; with the initial condition x0 = B1; (2.8)

which we de�ne for the sole purpose of simplifying our notation in

this proof. Suppose we can prove that there exists an input sequence

fu0; : : : ; un�2g such that the resulting state trajectory

fx0; : : : ; xn�1g spans Rn :

Then let the matrix F1 be a solution to

F1
�
x0 x1 � � � xn�1

�
=
�
u0 u1 � � � un�1

�
; (2.9)

where un�1 is any arbitrary vector. It is then easy to see that (A+BF1; B1)

is controllable: observe from (2.8) and (2.9) that

xk+1 = (A+BF1)xk x0 = B1 ;

and therefore�
x0 � � � xn�1

�
=
�
B1 (A+BF1)B1 � � � (A+BF1)

n�1B1

�
:

Since the left hand side has full rank so must the right hand side, which

establishes the claim.

Thus it is su�cient to show that there exists input sequence fu0; : : : ; un�2g
such that fx0; : : : ; xn�1g are linearly independent. We use induction. Sup-

pose that k < n and fu0; : : : ; uk�1g results in the linearly independent
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sequence

fx0; : : : ; xkg:
De�ne X = Im

�
x0 � � � xk

�
� Rn , and therefore we need to show that

there exists a new input vector uk such that xk+1 is not in the subspace

X . That is there exists uk such that

Axk +Buk 62 X : (2.10)

We will prove this by contradiction.

Suppose on the contrary that for any choice of the k-th input uk 2 Rn

we have

Axk +Buk 2 X :

Then in particular Axk is in X for uk = 0, and since X is a subspace we

have that

Buk 2 X
for all uk 2 Rm . This latter condition means ImB � X .
We now show that X must be A-invariant, or equivalently

Axj 2 X for 0 � j � k :

This holds for j = k from our assumption above. For j < k we note that

Axj = xj+1 �Buj :

Observe that this means the right hand side is in X , since xj+1 2 X and

Buj 2 X by assumption. Therefore X is A-invariant. Now this means

ImAB � AX � X and more generally that

ImAjB � X for 0 � j � n� 1 :

This implies

Im
�
B AB � � � An�1B

�
� X :

Since X is of dimension less than n we have a contradiction since (A;B) is

by hypothesis controllable. Therefore (2.10) must be true.

�

This proof tells us how to explicitly construct F , however much better

numerical methods exist; a complete discussion of numerically reliable

techniques would take us too far a�eld. This concludes our study of

controllability.

2.4 Observability

In the last section we studied a special case of the system equations pre-

sented in (2.1), which had an input but no output. We will now in contrast
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consider a system with an output but no input, the system is

_x(t) = Ax(t); with x(0) = x0

y(t) = Cx(t):

This system has no input, and its solution depends entirely on the initial

condition x(0) = x0. The solution of this equation is clearly

y(t) = CeAtx0; for t � 0:

We regard the function y(t) as an output and will now focus on the question

of whether we can determine the value of x0 by observing the variable y(t)

over a time interval.

2.4.1 The unobservable subspace

In this section we take the perspective of an onlooker who is only able to

measure or observe the output function y(t) over a �nite interval [0; T ],

but wants to �nd the value of x0. We can regard the expression for y as

a map 	 from the state space Rn to the space C([0; T ];Rp) of continuous
functions on [0; T ] that are Rp -valued; that is 	 : Rn ! C([0; T ];Rp) and
is de�ned by

x0
	7! CeAtx0 :

So we have that

y = 	x0

and our task is, if possible, to determine x0 given the function y. Now this

is possible exactly when there is only one solution to the above equation.

When y is a given solution we can be sure that it is the only solution, if

and only if the kernel of 	 is zero. Namely

ker	 = 0 :

Thus if this condition is met we will be able to determine x0, and if it is

violated then the initial conditions cannot be unambiguously discerned by

observing y. For this reason we say the matrix pair (C; A) is observable

if ker	 = 0. The following result gives us an explicit test for checking

observability.

Theorem 2.20. The kernel of 	 is given by

ker	 = kerC \ � � � \ kerCAn�1 = ker

26664
C

CA
...

CAn�1

37775 :
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The subspace ker	 is usually denoted NCA and is called the unobservable

subspace of the pair (C;A) for reasons we will soon see. Thus a system is

observable whenNCA = 0. The matrix on the right in the theorem is named

the observability matrix; from the theorem, observability is equivalent to

this matrix having full column rank.

Proof . We �rst show that ker	 � kerC \ � � � \ CAn�1. Let x0 2 ker	

and therefore by de�nition we know that

CeAtx0 = 0 for t � 0:

It is straightforward to verify that for each k � 0 the following holds

dk

dtk
CeAtx0

����
t=0

= CAkx0:

But by the equation that precedes the above we see that the left hand-side

must be zero, and so x0 must be in the kernel of any matrix CAk where k

is non negative.

To complete our proof we must show that kerC\� � �\kerCAn�1 � ker	.

By Lemma 2.5 we know there exist scalar functions �k(t) such that

eAt = �0(t)I + � � �+ �n�1(t)An�1

for t � 0. From this it is clear that if x0 is in kerC \ � � � \ kerCAn�1 then
CeAtx0=0. �

Although observability and controllability have been motivated in very

di�erent ways they are intimately related algebraically.

Proposition 2.21. The following are equivalent

(a) (C; A) is observable;

(b) (A�; C�) is controllable.

Proof . Condition (b) holds when the controllability matrix

P :=
�
C� A�C� � � � (A�)n�1C�

�
has the full rank of n. This is true, if and only if, the transpose matrix

P � has rank n. It is routine to verify that P � is exactly the observability

matrix associated with (C A). �

Having established this algebraic link between the concepts of controlla-

bility and observability, we can now easily �nd analogous versions of all our

results on controllability for observability. These analogs are listed in the

following proposition, and their proofs are left as an exercise and review.

Proposition 2.22.
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(a) The pair (C;A) is observable, if and only if

rank

�
A� �I

C

�
= n for all � 2 C ;

(b) The eigenvalues of A+LC are freely assignable by choosing L, if and

only if, (C;A) is observable;

(c) The unobservable subspace NCA is A-invariant;

(d) There exists a similarity transformation T such that

TAT�1 =
�
~A11 0
~A21

~A22

�
; CT�1 =

�
~C1 0

�
where ( ~C; ~A11) is observable;

(e) The matrix ~A22 in part (d) is Hurwitz, if and only if, the condition

rank

�
A� �I

C

�
= n for all � 2 �C+ holds :

All these properties can be obtained from our work on controllability. Notice

that in part (d) the following holds.

TNCA = Im

�
0

I

�
:

We will call the decomposition of part (d) an observability form, because

it explicitly isolates the invariant subspace NCA. Writing out the state

equations in this form gives us particular insight:

_~x1(t) = ~A11~x1(t);

_~x2(t) = ~A21~x1(t) + ~A22~x2(t);

y(t) = ~C1~x1(t); with the initial condition

�
~x1(0)

~x2(0)

�
= Tx:

From here it is clear that ~x1 only depends on the initial condition ~x1(0),

and is completely una�ected by ~x2; therefore y is entirely independent of

~x2. For this reason we say

� the vector ~x1 contains the observable state;

� the vector ~x2 contains the unobservable state.

Now suppose ~x1(0) = 0. Then ~x1(t) is zero for all time,

_~x2(t) = ~A22~x2(t);

and y = 0. If ~A22 is not Hurwitz we have for some initial state ~x2(0), that

y is zero for all time yet ~x2(t) does not tend to zero. In contrast if ~A22 is

Hurwitz we know that ~x2(t) will tend to zero.
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Because this situation is important, it is worthwhile to de�ne a term:

when ~A22 is Hurwitz we say that (C;A) is a detectable matrix pair. Part

(e) of the proposition provides a way to check detectability via a PBH type

test.

Here we have introduced the notion of observability, motivated by the

fact that we wish to determine x(0) given the function y. We now turn to

issues related to actually constructing a method for determining the state

given the system output.

2.4.2 Observers

Frequently in control problems it is of interest to obtain an estimate of the

state x(t) based on past values of the output y. From our investigation in

the last section we learned under what conditions x(0) can be determined

exactly by measuring y. If they are met there are a number of ways to do

this; we will investigate an important one in the exercises. Right now we

focus on determining asymptotic estimates for x(t).

We will pursue this goal using our full state space system

_x(t) = Ax(t) +Bu(t); x(0) = x0;

y(t) = Cx(t) +Du(t):

Our objective is to �nd an asymptotic approximation of x(t) given the

input u and the output y, but without knowledge of the initial condition

x(0).

There are a number of ways to address this problem, and the one we

pursue here is using a dynamical system called an observer. The system

equations for an observer are

_w(t) =Mw(t) +Ny(t) + Pu(t); w(0) = w0

x̂(t) = Qw(t) +Ry(t) + Su(t): (2.11)

So the inputs to the observer are u and y, and the output is x̂. The key

property that the observer must have is that the error

x̂(t)� x(t)
t!1�! 0

for all initial conditions x(0) and w(0), and all system inputs u.

Theorem 2.23. An observer exists, if and only if, (C;A) is detectable.

Furthermore, in that case one such observer is given by

_̂x(t) = (A+ LC)x̂(t)� Ly(t) + (B + LD)u(t) (2.12)

where the matrix L is chosen such that A+ LC is Hurwitz.

Notice in the observer equation (2.12) that we have x̂ = w, so we have

removed w for simplicity. An observer with this structure is called a full-

order Luenberger observer.
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Proof . We �rst show the necessity of the detectability condition, by con-

trapositive. We will show that if (C;A) is not detectable, there always exist

initial conditions x(0) and w(0), and an input u(t), where the observer er-

ror does not decay to zero. In particular, we will select u = 0, w(0) = 0,

and x(0) to excite only the unobservable states, as is now explained.

Without loss of generality we will assume the system is already in observ-

ability form. For the general case, a state-transformation must be added to

the following argument; this is left as an exercise. With this assumption,

and u = 0, we have the equations

_x1(t) = A11x1(t)

_x2(t) = A21x1(t) +A22x2(t)

y(t) = C1x1(t):

Notice that if (C;A) is not detectable, A22 is not a Hurwitz matrix.

Therefore x2(0) can be chosen so that the solution to

_x2(t) = A22x2(t)

does not tend to zero as t ! 1. Now choosing x1(0) = 0, it is clear that

x1(t), and also y(t), will be identically zero for all time, while x2(t) evolves

according to the autonomous equation and does not tend to zero.

Now turning to a generic observer equation of the form (2.11), we see

that if w(0) = 0, then w(t) and therefore x̂(t) are identically zero. This

contradicts the fact that the error x̂(t) � x(t) tends to zero, so we have

shown necessity.

The proof of su�ciency is constructive. We know that if (C;A) is de-

tectable, L can be chosen to make A + LC a Hurwitz matrix. With this

choice, we construct the observer in (2.12). Substituting the expression for

y into (2.12) we have

_̂x(t) = (A+ LC)x̂(t)� L(Cx(t) +Du(t) ) + (B + LD)u(t)

= (A+ LC)x̂(t)� LCx(t) +Bu(t):

Now if we subtract the state equation from this, we obtain

_̂x(t)� _x(t) = (A+ LC)x̂(t)� LCx(t) +Bu(t)�Ax(t) �Bu(t)

= (A+ LC)(x̂(t)� x(t) )

This means that the error e = x̂ � x satis�es the autonomous di�erential

equation

_e(t) = (A+ LC)e(t)

Since A+ LC is a Hurwitz matrix, e(t) tends to zero as required. �
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2.4.3 Observer-Based Controllers

We will now briey exhibit a �rst example of feedback control, combin-

ing the ideas of the previous sections. Feedback consists of connecting a

controller of the form

_xK(t) = AKxK(t) +BKy(t)

u(t) = CKxK(t) +DKy(t)

to the open-loop system (2.1), so that the combined system achieves some

desired properties. A fundamental requirement is the stability of the re-

sulting autonomous system. We have already seen that in the case where

the state is available for feedback (i.e. when y = x), then a static control

law of the form

u(t) = Fx(t)

can be used to achieve desired closed-loop eigenvalues, provided that (A;B)

is controllable. Or if it is at least stabilizable, the closed loop can be made

internally stable.

The question arises as to whether we can achieve similar properties for

the general case, where the output contains only partial information on the

state. The answer, not surprisingly, will combine controllability properties

with observability of the state from the given output. We state the following

result.

Proposition 2.24. Given open-loop system (2.1), the controller

_̂x(t) = (A+ LC +BF + LDF )x̂(t)� Ly(t)

u(t) = F x̂(t)

is such that the closed loop system has eigenvalues exactly at the eigenvalues

of the matrices A+BF and A+ LC.

Notice that given the choice of u, the �rst equation can be rewritten as

_̂x(t) = (A+ LC)x̂(t)� Ly(t) + (B + LD)u(t)

and has exactly the structure of a Luenberger observer (2.12) for the state

x. Given this observation, the expression for u can be interpreted as be-

ing analogous to the state feedback law considered above, except that the

estimate x̂ is used in place of the unavailable state.

Proof . Combining the open loop system with the controller, and elimi-

nating the variables u, y, leads to the combined equations�
_x(t)
_̂x(t)

�
=

�
A BF

�LC A+ LC +BF

� �
x(t)

x̂(t)

�
Now the similarity transformation

T =

�
I �I
0 I

�
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(which amounts to replacing x by x� x̂ as a state variable) leads to

T

�
A BF

�LC A+ LC +BF

�
T�1 =

�
A+ LC 0

�LC A+BF

�
which exhibits the eigenvalue structure. �

As a consequence of this result, we conclude that controllability and

observability of (A;B;C;D) su�ces to place the closed-loop eigenvalues

at any desired locations, whereas stabilizability and detectability su�ce to

obtain an internally stabilizing feedback law. In addition, notice that the

state-feedback and observer components appear in a decoupled fashion, so

they can be designed independently; this property is commonly called the

separation principle.

2.5 Minimal realizations

In the rest of the chapter we look at the state-space system

_x(t) = Ax(t) +Bu(t); x(0) = x0

y(t) = Cx(t) +Du(t)

from the point of view of the relationship it establishes between inputs and

outputs. We focus on the case where the system is initially at rest, with

x(0) = 0, and see that in this case the system establishes a map between

inputs and outputs, given by the formula

y(t) =

Z
t

0

CeA(t��)Bu(�)d� +Du(t) :

In this section take the standpoint that this input-output map is the pri-

mary object of study, and the state-space system is merely a realization of

this map, i.e. a way to de�ne such a map in terms of �rst-order di�erential

equations. From this point of view, a natural question is to study when

realizations are equivalent. In other words when doesZ
t

0

CeA(t��)Bu(�)dt +Du(t) =

Z
t

0

C1e
A1(t��)B1u(�)d� +D1u(�)

hold for all input functions u and all times t � 0. In particular we will be

interested in �nding, among all equivalent realizations, the one with the

minimal dynamic order, which we de�ne as the dimension n of the square

matrix A.

We �rst characterize equivalence in the following result.

Lemma 2.25. Two system realizations (A;B;C;D) and (A1; B1; C1; D1)

are equivalent, if and only if, D = D1 and

CeAtB = C1e
A1tB1 holds for all t � 0.



2.5. Minimal realizations 85

Proof . It is clear from the input-output formula that the said conditions

are su�cient for equivalence. We now show necessity.

First, it is clear that D = D1 must hold since in particular Du(0) =

D1u(0) for all u(0). With this in place we can now rewrite the equivalence

condition as Z
t

0

fCeA(t��)B � C1e
A1(t��)B1gu(�)d� = 0; (2.13)

for all functions u. It thus remains to show that the factor multiplying u(t)

in (2.13) must be identically zero. For simplicity we show this in the case

where CeAtB and C1e
A1tB1 are scalar functions; the multivariable case

follows using a very similar argument.

Suppose, by contrapositive, that for some t0 � 0 the functions are not

equal. Then de�ne

u(t) = jCeA(t0+1�t)B � C1e
A1(t0+1�t)B1j

and notice that u(1) > 0. Thus applying this input to the condition in

(2.13), with t = t0 + 1, we see thatZ
t0+1

0

fCeA(t0+1��)B � C1e
A1(t0+1��)B1gu(�)d� =

Z
t0+1

0

ju(�)j2d� > 0;

where the last inequality follows from the fact that u is a continuous

function and u(1) > 0. Thus we have a contradiction and necessity

follows. �

This lemma reduces the equivalence of realizations to checking that two

functions of time are equal. We now provide an alternative characterization,

in terms of the matrices CAkB, which are called the Markov parameters

of the system realization (A; B; C;D).

Lemma 2.26. The two realizations (A;B;C;D) and (A1; B1; C1; D1) are

equivalent, if and only if D = D1 and

CAkB = C1A
k

1B1 for all k � 0: (2.14)

Proof . By Lemma 2.25 we must show the equivalence of (2.14) with

CeAtB = C1e
A1tB1:

for all t � 0. The su�ciency of (2.14) follows clearly by de�nition of the

matrix exponential, since

CeAtB = CB + CABt+ CA2B
t2

2
+ � � �

For the converse, assume the time functions are equal and notice that the

k-th (right) derivative of CeAtB is given by

dk

dtk
CeAtB = CAkeAtB;



86 2. State Space System Theory

with a similar expression for the derivatives of C1e
A1tB1. These derivatives

all must be equal, so we have

dk

dtk
CeAtB

����
t=0

= CAkB = C1A
k

1B1 =
dk

dtk
C1e

A1tB1

����
t=0

as required.

�

Now we turn to the question of minimality: given a realization

(A;B;C;D) of order n, does there exist an equivalent realization (A1; B1; C1; D)

of order n1 < n? The next theorem tells us that this question is related to

observability and controllability.

Proposition 2.27. Suppose (A; B; C; D) is a system realization. If either

(C;A) is not observable or (A;B) is not controllable, then there exists a

lower order realization (A1; B1; C1; D) for the system.

Proof . There are two cases to consider: (A;B) not controllable and (C; A)

unobservable. We will assume that (A;B) is not controllable since the unob-

servable case is nearly identical in proof. With this assumption we convert

to controllability form. That is choose a similarity transformation T such

that

TAT�1 =
�
~A11

~A12

0 ~A22

�
and TB =

�
~B1

0

�
;

where the dimensions of ~A22 are nonzero. Let

CT�1 =
�
~C1

~C2

�
and we see that

CeAtB =
�
~C1

~C2

� �e ~A11t ?

0 ?

� �
~B1

0

�
= ~C1e

~A11t ~B1 :

Thus setting A1 = ~A11; B1 = ~B1 and C1 = ~C1 and invoking Lemma 2.25

we have found a lower order realization. �

The result above says that if a realization is not both controllable and

observable, then there exists a lower order equivalent realization. Immedi-

ately we wonder whether controllability and observability of a realization

guarantees that it is of the lowest order; such a lowest order realization is

called a minimal realization. The answer is a�rmative, as we show in the

following result.

Theorem 2.28. If (C;A) is observable and (A;B) is controllable, then

(A;B;C;D) is a minimal realization.

Proof . We will show that if (A1; B1; C1; D1) is a realization which is equiv-

alent to (A;B;C;D), then the dimension of A1 is no smaller than that of

A.
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From Lemma 2.26 we know that

CAkB = C1A
k

1B1 for k � 0 :

Therefore in particular we have that26664
C

CA
...

CAn�1

37775 �B AB � � � An�1B
�

is equal to 26664
C1

C1A1

...

C1A
n�1
1

37775 �B1 A1B1 � � � An�11 B1

�
:

Now both the matrices on the left side of the equation have the full rank

of n; thus their product has rank n. This means that the right hand-side

has rank n, and simply by the dimensions we see that A1 must be at least

n� n in size. �

We have completed our study of minimal realizations for input-output

systems with only time domain considerations. We now turn to an alterna-

tive characterization of systems which is of great importance and will be

used throughout the course.

2.6 Transfer functions and state space

An alternative method for the study of systems from an input-output per-

spective, is to employ transforms of the relevant signals. In particular, the

Laplace transform of a time function f(t) is de�ned as

f̂(s) :=

Z 1

0

f(t)e�stdt

where s varies in a region of the complex plane C where the above integral

converges. Thus we de�ne a linear transformation between functions of

t and functions of s. We will not pursue here the question of describing

function spaces in which this transform is well-de�ned; an important case

will be discussed in detail in the next chapter. For the moment assume that

all time functions of interest increase no faster than exponentially. More

precisely, given a function f assume that there exist real constants � and

� satisfying

jf(t)j � �e�t for all t � 0:
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In this case the above transform is well de�ned for Re(s) > �.

A basic property is that if the time derivative _f(t) has a well de�ned

Laplace transform, the latter is given by

sf̂(s)� f(0):

This property can be used to derive a Laplace transform version of our

basic state-space system (2.1) of the form

sx̂(s)� x(0) = Ax̂(s) +Bû(s);

ŷ(s) = Cx̂(s) +Dû(s):

In the special case of x(0) = 0, the input output relationship

ŷ(s) = Ĝ(s)û(s) (2.15)

follows, where

Ĝ(s) = C(Is�A)�1B +D

is called the transfer function of the system. This function is well de�ned

whenever the matrix (Is�A) has an inverse, and in particular the identity
(2.15) will hold in some right-half plane Re(s) > �, where this inverse, as

well as the transforms ŷ(s) and û(s), are well-de�ned.

We can also relate the relationship (2.15) to the time domain description

y(t) =

Z
t

0

CeA(t��)Bu(�)d� +Du(t) (2.16)

considered in the previous section. To do this, �rst notice that the transform

of the termDu(t) isDû(s). Next we can show that (Is�A)�1 is the Laplace
transform of the matrix eAt. For this purpose consider

Re(s) > max Re( eig(A) );

and writeZ 1

0

eAte�stdt =
Z 1

0

e�(sI�A)tdt = �(sI �A)�1
Z 1

0

d

dt

h
e�(sI�A)t

i
dt

= (sI �A)�1
�
I � lim

t!+1
e�(sI�A)t

�
= (sI �A)�1

where the last identity follows from the fact that since the eigenvalues of

�(Is � A) have all negative real parts, all the entries in the matrix will

have exponentially decaying terms. We refer to the study of the formula

for the matrix exponential, leaving details as an exercise.

It follows immediately from linearity that C(Is�A)�1B is the transform

of CeAtB. Then the �rst term in (2.16) can be interpreted as a convolution

integral between CeAtB and u(t), whose transform will be the product

C(Is�A)�1Bû(s)
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completing the relationship (2.15). We will not expand here on the issue

of convolutions and their relationship with transforms, since we return to

this topic in the next chapter.

The transfer function provides yet another version of the equivalence

between two state-space realizations.

Lemma 2.29. The two realizations (A;B;C;D) and (A1; B1; C1; D1) are

equivalent, if and only if

Ĝ(s) = C(Is�A)�1B +D = C1(Is�A1)
�1B1 +D1 = Ĝ1(s) ; (2.17)

for all s where the inverses are well de�ned

Proof . One can argue that this must be true based on the input-output

relationship (2.15). Alternatively, using Lemma 2.25 and the transform of

CeAtB computed above, it su�ces to show that Ĝ(s) = Ĝ1(s) if and only

if

D = D1; C(Is�A)�1B = C1(Is�A1)
�1B1:

Here the \if" direction is obvious, and \only if" follows by noticing that

D = lim
s!1

Ĝ(s) = lim
s!1

Ĝ1(s) = D1;

which in turn uses the fact that

lim
s!1

(Is�A)�1 = lim
s!1

1

s
(I �A=s)�1 = 0 ;

and similarly with A1. �

2.6.1 Real-rational matrices and state space realizations

We now discuss the structure of the transfer function Ĝ(s), constituted by

real rational functions of the variable s.

A rational function is the quotient of two real polynomials, of the general

form

ĝ(s) =
bms

m�1 + � � �+ b1s+ b0

sn + an+1sn�1 + � � �+ a0

for appropriate scalars ak and bk, wherem and n are the order of numerator

and denominator polynomials. The function is called real rational if the ak,

bk are real numbers. This function is de�ned everywhere in the complex

plane, except at the roots of the denominator polynomial. Recall that a

function has a pole in the complex plane if it tends to in�nity as that point

is approached; for the rational function ĝ(s) poles can only occur at the

roots of its denominator.

We say that a rational function is proper if n � m, and strictly proper

if n > m. Notice these are equivalent to the statements

lim
s!1

ĝ(s) exists in C and lim
s!1

ĝ(s) = 0 respectively.
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Our interest here is primarily in rational, proper functions. We extend our

notion of such scalar functions to the matrix case: suppose

Ĝ(s) =

264ĝ11(s) � � � ĝm1(s)
...

. . .
...

ĝ1p(s) � � � ĝmp(s)

375
where each ĝij(s) is a scalar function. Then we de�ne Ĝ(s) to be real

rational and proper if each scalar function ĝij(s) has these properties. We

say that Ĝ(s) has a pole at a point if one of its scalar entries does.

Now returning to our transfer function, we see that it is indeed rational

since (Is�A)�1 can be written using Cramer's rule as

(Is�A)�1 =
1

det(Is�A)
adj(Is�A);

where adj (�) denotes the classical adjoint of a matrix and is formed of

cofactors of elements of the matrix. Therefore adj(Is � A) is a matrix of

polynomial entries, each of which has order less than n. The determinant

det(Is � A) is also a polynomial, indeed the characteristic polynomial of

A, and has order n. Therefore (Is�A)�1 is a strictly proper, real rational
matrix, and it follows that C(Is � A)�1B + D is a proper, real rational

matrix.

We now turn to the converse question: given a real rational transfer

function, is it always the transfer function of some state-space system?

The next proposition establishes the converse in the strictly proper scalar

case.

Lemma 2.30. Suppose that

ĝ1(s) =
cn�1sn�1 + � � �+ c0

sn + an�1sn�1 + � � �+ a0
;

then there exists a state space realization (A;B;C; 0) such that

ĝ1(s) = C(Is�A)�1B; where A is n� n.

Proof . Let

C = [c0 � � � cn�1]; A =

26664
0 1 0

. . .
. . .

0 0 1

�a0 �a1 �an�1

37775 ; and B =

26664
0
...

0

1

37775 :

Then it is routine to verify that this realization satis�es the claim. �

From this lemma we can prove the more general scalar result.
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Proposition 2.31. If ĝ(s) is a proper rational function given by

ĝ(s) =
cns

n + cn�1sn�1 + � � �+ c0

sn + an�1sn�1 + � � �+ a0
;

then it has a state space realization (A;B;C;D) where A is n� n.

Proof . First since ĝ(s) is proper it is possible to write it as

ĝ(s) = ĝ1(s) +D;

where ĝ1 is strictly proper and D is a real constant. Now invoke

Lemma 2.30. �

Having treated the scalar case, we now turn to the matrix case, starting

with the following fact. Consider two transfer functions Ĝ1(s) = C1(Is �
A1)

�1B1 + D1 and Ĝ2(s) = C2(Is � A2)
�1B2 + D2. If we stack them to

form a larger transfer function the following can be veri�ed algebraically.�
Ĝ1(s)

Ĝ2(s)

�
=

�
C1(Is�A1)

�1B1 +D1

C2(Is�A2)
�1B2 +D2

�
=

�
C1 0

0 C2

��
Is�

�
A1 0

0 A2

���1 �
B1

B2

�
+

�
D1

D2

�
:

That is a block column with two transfer function entries is exactly a trans-

fer function. Similarly for appropriately dimensioned transfer functions we

have

�
Ĝ1(s) Ĝ2(s)

�
=
�
C1 C2

��
Is�

�
A1 0

0 A2

���1 �
B1 0

0 B2

�
+
�
D1 D2

�
:

Consequently if we are given a matrix Ĝ(s) of proper, real rational

functions, we can begin by �nding realizations

ĝij(s) = Cij(Is�Aij)
�1Bij +Dij :

for each entry using Proposition 2.31, and then use the previous rules

successively to form a state-space realization for Ĝ(s). We thus have the

following result, which summarizes the previous discussion.

Proposition 2.32. The set of proper real rational functions is equal to the

set of state space transfer functions.

The above construction provides a concrete algorithm for constructing a

state space realization for a rational proper function. However the proce-

dure may not be economical from the point of view of the dimension of the

state space system. These issues are discussed next.
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2.6.2 Minimality

In the above algorithm we assign separate states to each entry of the matrix,

which may lead to an unnecessarily high state dimension. This fact is now

illustrated.

Example:

Consider the transfer function

Ĝ(s) =
�

1
s+1

2
s+1

�
:

The previous construction would lead to

A =

�
�1 0

0 �1

�
; B =

�
1 0

0 1

�
; C =

�
1 2

�
;

but clearly a lower order realization is given by

A = �1; B = 1; C =
�
1 2

�
:

�

This raises once more the question of minimality of a state-space realiza-

tion, in this case as a representation of a rational transfer function. As

before a realization of a rational function Ĝ(s) is minimal if it has the

lowest possible dimension n for the A-matrix.

How does lack of minimality reect itself in the realization? In principle

the fact that (A;B;C;D) has more states than are necessary to describe

Ĝ(s) would imply that pole-zero cancellations will occur if we calculate

C

�
1

charA(s)
adj (Is�A)

�
B +D ;

since this expression must be the same as the one obtained with a lower

order characteristic polynomial in the denominator.

In the case of a scalar Ĝ(s), it can be shown that minimality is equivalent

to there being no pole-zero cancellations occurring when the state space

transfer function is computed. For the matrix case however the issue is

more complicated.

Examples:

For example it is not immediately obvious that

Ĝ1(s) =

"
1
s

0

1
s2

1
s

#
can be realized with n = 2, whereas

Ĝ2(s) =

"
0 1

s

1
s2

1
s

#
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requires that n be at least three, when in both cases the algorithm described

above would lead to n = 4. �

Therefore, a necessary complement to the above constructive procedure

is a test for the minimality of a given state-space realization of a transfer

function, and a procedure to remove unnecessary states. Fortunately we

have already provided the tools to address this problem.

Theorem 2.33. A realization (A;B;C;D) of a transfer function Ĝ(s) is

minimal, if and only if, (A;B) is controllable and (C;A) is observable.

Proof . We have already established that equality of transfer functions is

the same as equivalence of the corresponding input-output maps. Therefore

the proof reduces to Proposition 2.27 and Theorem 2.28. �

In addition to being able to test for minimality, our work in the earlier

sections provides a method to reduce the order of a non-minimal realiza-

tion, namely eliminating uncontrollable or unobservable states. This can be

easily done by transforming the realization to the controllability form or

to the observability form (these steps can be done successively). As an ex-

ercise, the reader is invited to construct minimal realizations for the above

transfer functions Ĝ1(s) and Ĝ2(s).

This brings us to the end of our work on basic state space system theory.

We have provided algebraic methods to describe a general class of linear

systems, both in the time domain and in the transfer function method.

In the next chapter we will move beyond the algebraic and attempt to

establish quantitative descriptions of signals and systems, from an input-

output perspective.

2.7 Exercises

1. Consider the following set of di�erential equations

u1 + c u2 = �q1 + b _q2 + q1;

u2 = �q2 + d �q1 + e _q2 + f q1;

where the dependent functions are q1 and q2. Convert this to a 2� 2

state space system.

2. Suppose A is Hermitian and is Hurwitz. Show that if x(t) = eAtx(0)

then jx(t)j < jx(0)j, for each t > 0. Here j � j denotes the Euclidean
length of the vector.

3. Prove that e(N+M)t = eNteMt if N and M commute. Use the

following steps:

(a) Show that eNt and M commute;
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(b) By taking derivatives directly show that the time derivative of

Q(t) = eNteMt satis�es _Q(t) = (N +M)eNteMt;

(c) Since Q(t) satis�es _Q(t) = (N +M)Q(t), with Q(0) = I , show

that Q(t) = e(N+M)t.

Notice in particular this demonstrates eN+M = eNeM .

4. Using Jordan decomposition prove Proposition 2.4.

5. In the proof of Lemma 2.8 we use that fact that given two subspaces

V1 and V2, then V1 � V2 if and only if V?1 � V?2 . Prove this fact.
Hint: �rst show that for any subspace V = (V?)?.

6. Prove Proposition 2.7.

7. Using a change of basis transform the pair

A =

2664
0 1 0 1

0 0 1 0

0 2 �1 0

0 �1 1 1

3775 B =

2664
1 1

1 0

1 0

0 0

3775
to the form ~A =

�
~A11

~A12

0 ~A22

�
and ~B =

�
~B1

0

�
where ( ~A11; ~B1) is

controllable.

8. Fill in the details of the proof of Theorem 2.12 on controllability form.

9. (a) Consider the discrete time state equation

xk+1 = Axk +Buk; with x0 = 0:

A state � 2 Rn is said to be reachable if there exists a sequence

u0; : : : ; uN�1 such that xN = �.

(i) Show that � reachable if and only if it is in the image of the

matrix
�
B AB � � � An�1B

�
;

(ii) If � is reachable the length N of the sequence uk can be

chosen to be at most n.

(b) Given the uncontrolled discrete time state space system

xk+1 = Axk; with initial condition x0

yk = Cxk;

we say it is observable if each x0 gives rise to a unique output

sequence yk.

(i) Show that the above system is observable if and only if

(A�; C�) is controllable;
(ii) Prove that if the system is observable, the initial condition

x0 can be determined from the �nite sequence y0; : : : ; yn�1.

10. Provide the details of a proof for Corollary 2.15.
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11. Using our proofs on controllability and stabilizability as a guide, prove

all parts of Proposition 2.22.

12. Given a pair (C;A), devise a test to determine whether it is possible

to �nd a matrix L so that all the eigenvalues of A+LC are equal to

�1; you should not have to explicitly construct L.

13. In this question we derive the famous Kalman decomposition, which

is a generlization of the controllability and oberservability forms we

have studied in this chapter. Suppose we are given a matrix triple

(C; A; B).

(a) Prove that the subspace intersection CAB \NCA is A-invariant;

(b) Show that there exists a similarity transformation T so that

T�1AT =

2664
A1 0 A6 0

A2 A3 A4 A5

0 0 A7 0

0 0 A8 A9

3775 ; T�1B =

2664
B1

B2

0

0

3775 ;
and CT =

�
C1 0 C2 0

�
. Furthermore the following proper-

ties are satis�ed.

� the pair (C1; A1) is observable;

� the pair (A1; B1) is controllable;

� the pair

��
A1 0

A2 A3

�
;

�
B1

B2

��
is controllable;

� the pair

��
C1; C2

�
;

�
A1 A6

0 A7

��
is observable.

To do this use the A-invariance properties of the controllable

subspace CAB and the unobservable subspace NCA, and use T

to decompose the state space into the four independent sub-

spaces that are: controllable and observable; controllable and

unobservable; observable and uncontrollable; unobservable and

uncontrollable.

14. Given the system matrices

A =

24 2 2 1

1 1 1

4 1 0

35 ; B =

24 2 2

2 1

3 2

35
C = [2 1 0];

determine whether it is possible to construct an observer for the

system

_x = Ax+Bu x(0) = x0

y = Cx:
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15. (i) Given the system

_x(t) = Ax(t) +B u(t); x(0) = x0:

Provide an explicit solution for the state x(1) in terms of u(t).

(ii) Suppose in the system of (i) that

A =

24 �1 2 0

�4 5 0

0 0 4

35 B =

24 1

1

0

35 x(0) =

24 e�3

2e�3

e�4

35
Does there exist a function u(t) so that

x(1) =

24 11

12

1

35?
Give full justi�cation for your answer, but note that you do not

necessarily have to �nd u(t) explicitly.

16. Recall the double pendulum system of the introductory chapter.

Discuss whether there any equilibrium points around which the sys-

tem linearization loses controllability. Is it stabilizable around these

points?

Notes and references

The material covered in this chapter is standard, although the presenta-

tion here is largely based on [40]. For this reason we primarily highlight the

origin of the ideas and concepts. The fundamental ideas of controllability

and observability introduced in this chapter are due to Kalman [64]. The

PBH test, as its name suggests was developed independently by the three

researchers in [102, 8, 55]. The well-known result on controllable canoni-

cal form presented in conjunction with single input eigenvalue assignment

originates from [101]. The �rst proof of the multivariable eigenvalue assign-

ment result appears in [143]. The controllability and observabilty forms of

this chapter are special cases of the so-called Kalman decomposition which

was introduced in [65, 45]. This also led to the notion of system minimality.

The key idea involved in constructing the Luenberger observer presented

here was �rst reported in [78].

For more detailed historical references on time domain state space theory

than provided above, and an in depth look at state space systems from

a geometric perspective, see [144]. In the �nal section of this chapter we

introduced the basics of rational function theory and connections with state

space realizations; a more complete treatment in a systems context can be

found in [62].
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Linear Analysis

One of the prevailing viewpoints for the study of systems and signals is

that in which a dynamical system is viewed as a mapping between input

and output functions. This concept underlies most of the basic treatments

of signal processing, communications, and control. Although a functional

analytic perspective is implicitly used in these areas, the associated ma-

chinery is not typically used directly for the study of dynamical systems.

However incorporating more machinery from analysis (function spaces, op-

erators) into this conceptual picture, leads to methods of key importance

for the study of systems. In particular, operator norms provide a natural

way to quantify the \size" of a system, a fundamental requirement for a

quantitative theory of system uncertainty and model approximation.

In this chapter we introduce some of the basic concepts from analysis

that are required for the development of robust control theory. This involves

assembling some de�nitions, providing examples of the central objects and

presenting their important properties. This is the most mathematically

abstract chapter of the course, and is intended to provide us with a solid

and rigorous framework. At the same time, we will not attempt a completely

self contained mathematical treatment, which would constitute a course in

itself. To build intuition, the reader is encouraged to supply examples and

proofs in a number of places. For detailed proofs of the most technical

results presented consult the references listed at the end of the chapter.

During the chapter we will encounter the terminology \for almost ev-

ery" and \essential supremum", which refer to advanced mathematical

concepts that are not part of the core of our course. These clauses are

used to make our statements precise, but can be replaced by \for every"
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and \supremum", respectively, without compromising understanding of the

material. If these former terms are unfamiliar, precise de�nitions and a

short introduction to them are given in Appendix A.

3.1 Normed and inner product spaces

The most important mathematical concept in this course is that of a

normed space, which we will use continually to measure both signals and

systems. We will start by de�ning exactly what we mean by a norm, and

then move on to some examples.

De�nition 3.1. A norm k � kV on a vector space V is a function mapping

V ! [0; 1) which, for each v 2 V, satis�es

(a) kvkV = 0 if and only if v = 0;

(b) j�j � kvkV = k�vkV , for all scalars �;

(c) ku+ vkV � kukV + kvkV , for all u 2 V.
De�ning a norm on a vector space is done to make the notion of the \size"

of an element precise, that is the size of v is kvkV . With this in mind

condition (a) says that the zero element is the only member of V which

has size zero. The second norm requirement (b) means that the size of �v

must scale linearly according to the sizes of � and v. The third condition

is called the triangle inequality, inspired by the case of Euclidean space: if

u and v are vectors that specify two sides of a triangle, then (c) states that

the third side u+v must have length no larger than the sum of the lengths

of the other two.

A vector space together with a norm is called a normed space and is

denoted (V ; k �kV). Frequently when the norm and space is clear we simply

write k � k, suppressing the subscript on the norm symbol. Understanding

normed spaces will provide us with a powerful point of view, and we now

begin to explore this new concept.

We say a sequence vk 2 V converges in a normed space V if there exists

v 2 V such that

kv � vkk k!1�! 0:

We use limk!1 vk = v to denote the above relationship; thus this preserves

our usual notation for limits with numbers, although our interpretation is

slightly more involved.

Examples:

In Chapter 1 we have already encountered the Euclidean norm on the �nite

dimensional space C n . A variety of other norms can be put on this space;
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a standard family is formed by the so-called p-norms. Given a p � 1 we

de�ne the p-norm

jvjp := (jv1jp + � � �+ jvnjp)
1
p ; where v 2 C n :

Notice that we use the notation j � jp instead of k � kp; the reason for this

convention is to avoid confusion with function norms, de�ned below. When

the sub-index is suppressed, we will assume by default that we are referring

to p = 2, that is the Euclidean norm jvj = jvj2.
This family of norms is extended to the case where p = 1 by de�ning

the 1-norm to be

jvj1 := max
1�k�n

jvkj:

We can also de�ne norms for matrices, in particular the Frobenius norm

is de�ned as

jM jF := (TrM�M)
1
2 for M 2 Cm�n ,

and the maximum singular value from Chapter 1

��(M) := (maximum eigenvalue of M�M)
1
2 :

is also a norm. Once again we use the notations j � jF and ��(�) instead of

the norm sign k � k.
Our primary interest is norms de�ned on spaces of functions. For p � 1,

let Ln
p
(�1; 1) denote the vector space of functions mapping R to C n that

satisfy Z 1

�1
ju(t)jp

p
dt <1;

where j � jp denotes the vector norm on C n de�ned above. Then

kukp :=
�Z 1

�1
ju(t)jp

p
dt

� 1
p

is a norm on this space, and is the one tacitly associated with it. The

superscript n is called the spatial dimension of the space Ln
p
(�1; 1). In

most cases we will not need to keep track of this dimension and so we

simply write Lp(�1; 1).

We complete the family of Lp spaces with the normed space L1(�1; 1)

consisting of functions such that

kuk1 := ess sup
t2R

ju(t)j1

is �nite. Once again juj1 is the previously de�ned vector norm.

We also de�ne the space Lp[0; 1) to be the set of functions in

Lp(�1;1) with support in [0;1), more precisely

Lp[0; 1) = fu(t) 2 Lp(�1;1) : u(t) = 0 for t < 0g:
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This convention is non-standard, more commonly Lp[0; 1) is the space of

functions with restricted domain. However it is clear that given a function

on [0;1), one can trivially identify it with a function on the above set by

de�ning it to be zero for t < 0.

By adopting the above rule, all our functions will be de�ned for all t

and we are allowed to write Lp[0; 1) � Lp(�1;1), in words Lp[0; 1)

is a normed subspace of Lp(�1;1). Analogously we de�ne the subspace

Lp(�1; 0] of functions that are zero for t > 0. �

Another very important notion that we will frequently encounter is an

inner product, and it is closely related to the idea of a norm.

De�nition 3.2. An inner product h�; �iV on a vector space V is a function

mapping V � V ! C so that

(a) The inner product hv; viV is non negative, for all v 2 V;

(b) hv; viV = 0 if and only if v = 0;

(c) If v 2 V, then hv; �1u1 + �2u2i = �1hv; u1i+�2hv; u2i, for all ui 2 V
and scalars �i; i.e the mapping u 7! hv; ui is linear on V.

(d) hu; viV is the complex conjugate of hv; uiV , for all v; u 2 V.

Geometrically the inner product captures the idea of angle between two

elements of V in the same way that the so-called \dot" product does in

Euclidean space.

A vector space V together with an inner product h�; �iV is called an inner

product space. It can be veri�ed that

kvk =
p
hv; vi

satis�es the properties of a norm. The �rst two properties are straight-

forward; the triangle inequality can be established by �rst proving the

Cauchy-Schwarz inequality

jhu; vij � kuk � kvk;

both are proved in the exercises. Thus the properties of an inner product

are more restrictive than those of a norm.

We say that two elements u; v in V are orthogonal if

hu; vi = 0:

The notation u?v is sometimes used to indicate this relationship. It is easy
to show that if u?v, then

ku+ vk2 = kuk2 + kvk2:

This is a generalization of Pythagoras' theorem.
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Examples:

The standard example of an inner product space, from which much intuition

about inner product spaces is gained, is Euclidean space. That is Rn or C n

with the inner product

hx; yi := x�y := x�1y1 + � � �+ x�
n
yn;

where again � denotes complex conjugate transpose.

The matrix generalization of this inner product is de�ned on Cm�n and

is given by

hA;Bi := TrA�B;

for two elements A and B of Cm�n . Notice that this inner product induces
the Frobenius norm jAjF . Also if n = 1 then this is exactly the inner

product space Cm from above.

We now introduce what for us will be the most important example of

an inner product space. Starting with the space of functions L2(�1; 1)

de�ned before, we introduce

hx; yi :=
Z 1

�1
x�(t)y(t) dt:

It can be shown that this integral is well de�ned, and is an inner product;

also the corresponding norm coincides with the norm k � k2 de�ned above.

Thus L2(�1; 1) is an inner product space. Also the subspaces L2(�1; 0]

and L2[0;1) of functions with support in the \past" and \future" are

themselves inner product spaces. �

We are now ready to consider normed and inner product spaces which

have an additional convenient property.

3.1.1 Complete spaces

We have already talked about convergence of sequences in normed and

inner product spaces. We said that the limit limk!1 vk exists, if there

exists an element v in the inner product space, such that the numerical

limit limk!1 kv � vkk = 0. This is a precise de�nition, but means that

if we are to determine whether a sequence vk converges it is in general

necessary to �nd such an element v. Finding v may be cumbersome or

impossible, which motivates the topic of this short section. We start with

the following concept.

De�nition 3.3. Suppose V is a normed space. A sequence vk is a Cauchy

sequence if, for each � > 0, there exists M � 0 such that

kvk � vlk < �; for all k; l �M:
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This de�nition simply says that a sequence is Cauchy if it satis�es

kvk � vlk k; l!1�! 0:

A Cauchy sequence is a sequence that \appears" to be converging. It is

not hard to show that every convergent sequence is necessarily a Cauchy

sequence, but the converse may not be true.

A normed space is complete if every Cauchy sequence in it converges,

and such a space is referred to as a Banach space. A complete inner product

space is called a Hilbert space. Thus if we know that a space is complete,

we can de�nitively check the convergence of any sequence vk by simply

determining whether or not it is a Cauchy sequence. More importantly

complete spaces behave very much like the complex numbers with regard

to convergence and are thus very convenient to work with.

Examples:

There is a plethora of Banach and Hilbert space examples. Our standard

spaces C n and Rn are complete, with the norms and inner products we

have de�ned thus far. All the Lp spaces we have de�ned are complete; see

Appendix A for some additional technical detail on this. In particular L2
is an example of a Hilbert space.

An example of an inner product space that is not complete is

W = fw 2 L2[0; 1) : there exists a T > 0 such that w(t) = 0; for all t � Tg;

equipped with the L2 norm. To see this consider the sequence of functions

given by

wk(t) :=

�
e�t; for 0 � t � k,

0; otherwise:

This sequence is clearly in W , and is a Cauchy sequence since kwk�wlk �
e�min(k;l). The sequence wk is in L2[0; 1) and it is easy to verify that it

converges in that space to the function

w(t) :=

�
e�t; for 0 � t,

0; otherwise:

But w is not in W , and thus W is not complete.

�

We have introduced the concept of completeness of a normed or inner

product space, and throughout the course we will work with spaces of this

type.
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3.2 Operators

As we have mentioned in the previous examples, normed spaces can be used

to characterize time domain functions, which we informally call signals.

We now examine mappings from one normed space V to another normed

space Z . These are central to the course as they will eventually be used to

represent systems. The focus of interest will be linear, bounded mappings.

De�nition 3.4. Suppose V and Z are Banach spaces. A mapping from V
to Z is called a linear, bounded operator if

(a) (Linearity) F (�1v1 + �2v2) = �1F (v1) + �2F (v2) for all v1; v2 2 V
and scalars �1, �2.

(b) (Boundedness) There exists a scalar � � 0, such that

kFvkZ � � � kvkV for all v 2 V : (3.1)

The space of all linear, bounded operators mapping V to Z is denoted by

L(V ;Z);
and we usually refer to linear, bounded operators as simply operators. We

de�ne the induced norm on this space by

kFkV!Z = sup
v2V; v 6=0

kFvkZ
kvkV

;

and it can be veri�ed that it satis�es the properties of a norm. Notice that

kFkV!Z is the smallest number � that satis�es (3.1). When the spaces in-

volved are obvious we write simply kFk. It is possible to show that L(V ;Z)
is a complete space, and we take this fact for granted. If V = Z we use the

abbreviation L(V) for L(V ;V).
We also have a natural notion of composition of operators. If F 2 L(V ;Z)

and G 2 L(Z ;Y) and the composition GF is de�ned by

(GF )v := G(Fv); for each v in V .
Clearly, GF is a linear mapping, and it is not di�cult to show that

kGFkV!Y � kGkZ!YkFkV!Z ; (3.2)

which implies GF 2 L(V ;Y). The above submultiplicative property of in-

duced norms has great signi�cance in robust control theory; we shall have

more to say about it below.

Examples:

As always our simplest example comes from vectors and matrices. Given

a matrix M 2 Cm�n , it de�nes a linear operator C n ! Cm by matrix

multiplication in the familiar way

z =Mv where v 2 C n :
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As in Chapter 1, we will not distinguish between the matrix M and the

linear operator it de�nes. From the singular value decomposition in Chapter

1, if we put the 2-norm on Cm and C n then

kMkCm!Cn = ��(M):

If we put norms di�erent from the 2-norm on Cm and C n , then it should be

clear that the induced norm of M may be given by something other than

��(M).

Another example that is crucial in studying systems is the case of con-

volution operators. Suppose f is in the space L11[0; 1) of scalar functions,

then it de�nes an operator F : L1[0; 1)! L1[0; 1) by

(Fu)(t) :=

Z
t

0

f(t� �)u(�)d�; t � 0;

for u in L1[0; 1). To see that F is a bounded mapping on L1[0; 1) notice

that if u 2 L1[0; 1) and we set y = Fu then the following inequalities are

satis�ed for any t � 0.

jy(t)j = j
Z

t

0

f(t� �)u(�)d� j

�
Z

t

0

jf(t� �)j ju(�)jd�

�
Z 1

0

jf(�)jd� kuk1 = kfk1 kuk1:

Therefore we see that kyk1 � kfk1 kuk1 since t was arbitrary, and more

generally that

kFkL1!L1
� kfk1:

It follows that F is a bounded operator. The next proposition says that

the induced norm is exactly given by the 1-norm of f , as one might guess

from our argument above.

Proposition 3.5. With F de�ned on L1[0; 1) as above we have

kFkL1!L1
= kfk1:

Proof . We have already shown above that kFkL1!L1
� kfk1 and so

it remains to demonstrate kFkL1!L1
� kfk1. We accomplish this by

showing that, for every � > 0, there exists u, with kuk1 = 1 such that

kFuk1 + � � kfk1:
Choose � > 0 and t such thatZ

t

0

jf(t� �)jd� + � > kfk1:
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Now set u(�) = sgn( f(t� �) ), that is the sign of f(t� �), and notice that

kuk1 � 1. Then we get

(Fu)(t) =

Z
t

0

f(t� �)sgn(f(t� �)) d�

=

Z
t

0

jf(t� �)j d�:

The function (Fu)(t) is continuous and therefore we get kFuk1 + � �
kfk1. �

Thus this example shows us how to calculate the L1 induced norm of

a convolution operator exactly in terms of the 1-norm of its convolution

kernel.

�

We now introduce the adjoint of an operator in Hilbert space.

De�nition 3.6. Suppose V and Z are Hilbert spaces, and F 2 L(V, Z).
The operator F � 2 L(Z ;V) is the adjoint of F if

hz; FviZ = hF �z; viV
for all v 2 V and z 2 Z.
We now look at some examples.

Examples:

The simplest example of this is where V = C n and Z = Cm , which are

equipped with the usual inner product, and F 2 Cm�n . Then the adjoint

of the operator F is exactly equal to its conjugate transpose of the matrix

F , which motivates the notation F �.
Another example is given by convolution operators: suppose that f is a

scalar function in L1[0; 1) and the operatorQ on L2[0; 1) is again de�ned

by

(Qu)(t) :=

Z
t

0

f(t� �)u(�)d�; (3.3)

for u in L2[0; 1). Then we leave it to the reader to show that the adjoint

operator Q� is given by

(Q�z)(t) =
Z 1

t

f�(� � t)z(�) d�; for z in L2[0; 1),

where f� denotes the complex conjugate of the function f . �

Some basic properties of the adjoint are given in the following statement;

while the existence proof is beyond the scope of this course, the remaining

facts are covered in the exercises at the end of the chapter.
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Proposition 3.7. For any F 2 L(V ;Z), the adjoint exists, is unique and

satis�es

kFk = kF �k = kF �Fk 1
2 : (3.4)

An operator F is called self-adjoint if F � = F , which generalizes the

notion of a Hermitian matrix. It is easy to show that when F is self-adjoint,

the quadratic form

�(v) := hFv; vi
takes only real values. Therefore we have � : (V ;V) �! R. Such quadratic

forms play an important role later in the course.

As in the matrix case, it is natural to inquire about the sign of such

forms. We will say that a self-adjoint operator is

� Positive semide�nite (denoted F � 0) if hFv; vi � 0 for all v 2 V .
� Positive de�nite (denoted F > 0) if, there exists � > 0, such that

hFv; vi � �kvk2, for all v 2 V .
We remark that an operator F satisfying hFv; vi � 0, for all nonzero

v 2 V , is not guaranteed to be positive as it is in the matrix case; the

exercises provide examples of this. An important property is that given an

operator in one of these classes, there always exists a square root operator

F
1
2 of the same class, such that (F

1
2 )2 = F .

We now introduce another important de�nition involving the adjoint. An

operator U 2 L(V ;Z) is called isometric if it satis�es

U�U = I;

The reason for this terminology is that these operators satisfy

hUv1; Uv2i = hU�Uv1; v2i = hv1; v2i;
for any v1; v2 2 V , i.e. the operator preserves inner products. In particular,

isometries preserve norms and therefore distances: they are \rigid" trans-

formations. A consequence of this is that they satisfy kUk = 1, but the

isometric property is clearly more restrictive.

An isometric operator is called unitary if U� = U�1, in other words

U�U = I and UU� = I:

Unitary operators are bijective mappings that preserve the all the structure

of a Hilbert space; if U 2 L(V ;Z) exists, the spaces V ;Z are isomorphic,

they can be identi�ed from an abstract point of view.

Example:

A matrix U 2 Cm�n whose columns u1; : : : ; un are orthonormal vectors in

Cm is an isometry; if in addition m = n, U is unitary.

�
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Before leaving this section we again emphasize that we use the same

notation \ * " to denote complex conjugate of a scalar, complex conjugate

transpose of a matrix, and adjoint of an operator; a moment's thought will

convince you that the former two are just special cases of the latter and

thus this helps keep our notation economical.

3.2.1 Banach algebras

We have already seen that the set of operators L(V) on a Banach space V
is itself a Banach space. However, the composition of operators endows it

with an additional algebraic structure, which is of crucial importance. In

this section we will isolate this structure and prove an important associated

result.

De�nition 3.8. A Banach algebra B is a Banach space with a multiplica-

tion operation de�ned for elements of B, mapping B � B ! B, satisfying
the following properties:

(a) Algebraic properties:

(i) There exists an element I 2 B, such that F � I = I � F = F , for

all F 2 B;
(ii) F (GH) = (FG)H, for all F; G; H in B;
(iii) F (G+H) = FG+ FH, for all F; G; H in B;
(iv) For all F; G in B, and each scalar �, we have F (�G) =

(�F )G = �FG.

(b) Property involving the norm: for all elements F; G in B, we have

kFGk � kFk � kGk:

This de�nition says that a Banach algebra has a multiplication opera-

tion de�ned between its elements, one element is the identity element, and

satis�es the standard properties of being associative, distributive, and com-

mutative with scalar multiplication. The key property of a Banach algebra

is that its norm satis�es the submultiplicative inequality, listed in (b).

While the above de�nition is abstract, we should keep in mind that the

main motivating example for the study of Banach algebras is the space

B = L(V) of operators on a Banach space V , equipped with the induced

norm. For this example the algebraic properties are immediate, and we

have already seen in (3.2) that the submultiplicative property holds.

Examples:

Of course C itself is a Banach algebra, but perhaps the simplest nontrivial

example is the space C n�n of n � n complex matrices equipped with the

maximum singular value norm ��(�). Clearly this is a special case of L(V)
with V = C n .
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An example of Banach algebra which does not correspond to a space of

operators is C n�n endowed with the Frobenius norm j � jF . It is shown in

the exercises that the submultiplicative inequality holds, but this is not an

induced norm. �

We now turn to the concept of an inverse of an element J in a Banach

algebra. We use J�1 to denote an element of B which satis�es

J J�1 = J�1 J = I:

If such an element exists it is not hard to see that it is necessarily unique.

The following result is very important in robust control theory, where it

is commonly referred to as the small gain theorem.

Theorem 3.9. Suppose Q is a member of the Banach algebra B. If kQk <
1, then (I �Q)�1 exists. Furthermore

(I �Q)�1 =
1X
k=0

Qk:

This theorem says that if the operator Q has \gain" kQk < 1, then (I �
Q)�1 is well-de�ned, and a power series expression for this inverse is given.
Although this norm condition is su�cient for the existence of the inverse

of I �Q it is not necessary as we see by example.

Examples:

If we take the Banach algebra (Rn�n ; ��(�) ) from the last example we see

that

with Q =

�
0 1

2
1
2

0

�
the maximum singular value ��(Q) =

1

2
:

Therefore by the theorem we know that the matrix I �Q has an inverse;

obviously it is easy for us to simply compute this inverse and show directly

that (I � Q)�1 = 2
3

�
2 1

1 2

�
, which also agrees with the formula in the

theorem.

This theorem gives su�cient conditions for the existence of (I � Q)�1

but the following simple example shows it is not necessary: let

~Q =

�
0 10

0 0

�
and then (I � ~Q)�1 =

�
1 �10
0 1

�
;

but ��( ~Q) = 10 which does not satisfy the hypothesis of the theorem. �

Having considered some simple examples | soon we will consider in�nite

dimensional ones | let us turn to the proof of the theorem. We start by

explaining the meaning of
P1

k=0Q
k. If this sum is a member of B, this sum
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represents the unique element L that satis�es

lim
n!1

kL�
nX

k=0

Qkk = 0;

that is L = limn!1
P

n

k=0Q
k. We also have the following technical lemma;

we leave the proof to the reader as it is a good exercise using the basic

properties discussed so far.

Lemma 3.10. Suppose Q and
P1

k=0Q
k are both in the Banach algebra B.

Then

Q

1X
k=0

Qk =

1X
k=1

Qk:

We are now ready to prove the theorem. The proof of the theorem relies

on the completeness property of the space B, and the submultiplicative

property.

Proof of Theorem 3.9. Our �rst task is to demonstrate that
P1

k=0Q
k

is an element of B. Since by assumption B is complete it is su�cient to

show that the sequence Tn :=
P

n

k=0Q
k is a Cauchy sequence. By the

submultiplicative inequality we have that

kQkk � kQkk:

For m > n we see that

kTm � Tnk = k
mX

k=n+1

Qkk �
mX

k=n+1

kQkk �
mX

k=n+1

kQkk;

where the left hand inequality follows by the triangle inequality. It is

straightforward to show that
P

m

k=n+1 kQkk = kQkn+1 1�kQkm�n
1�kQk , since

the former is a geometric series. We conclude that

kTm � Tnk �
kQkn+1
1� kQk ;

so Tn is a Cauchy sequence as we required.

Having established that
P1

k=0Q
k is an element of B we now show that

it is the inverse of I �Q. We look at the product

(I �Q)

1X
k=0

Qk =

1X
k=0

Qk �Q

1X
k=0

Qk = I +

1X
k=1

Qk �Q

1X
k=0

Qk = I;

where the right hand side follows by invoking Lemma 3.10. Similarly we

can show that
P1

k=0Q
k � (I�Q) = I , and therefore

P1
k=0Q

k is the inverse

of I �Q. �
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Thus we conclude our brief incursion into the theory of Banach algebras.

We now return to the special case of operators, to discuss the spectrum;

here we will �nd a �rst application for the above small gain result.

3.2.2 Some elements of spectral theory

In this section we introduce the spectrum of an operator and discuss a

few elementary properties. The objective is to cover only some basic facts

which will be used later in the course. For an extensive treatment of this

important topic in analysis, see the references at the end of the chapter.

While the spectrum can be studied for operators on Banach space, or

more generally for Banach algebras, we con�ne our discussion to operators

on a Hilbert space.

De�nition 3.11. Let V be a Hilbert space, and M 2 L(V). The spectrum

of M is de�ned by

spec(M) := f� 2 C : (�I �M) is not invertible in L(V)g;
and the spectral radius of M by

�(M) := supfj�j : � 2 spec(M)g:
A non-obvious fact which is implicit in the de�nition of �(M) is that the

spectrum is non-empty. We will accept this fact without proof.

Examples:

As usual we begin by considering the �nite dimensional case, with M 2
C n�n . It is clear that in this case the spectrum consists of the set of eigen-

values of M , and the spectral radius coincides with the largest absolute

value of any eigenvalue of M .

The next example shows that there may be more to the spectrum than

eigenvalues. Let V = L2[0;1) and de�ne the operator M as

M : u(t) 7! e�tu(t):

It is easy to show that the operator is bounded since e�t is a bounded

function on [0;1). Now we claim that spec(M) is the real interval [0; 1].

To see this notice that

(�I �M) : u(t) 7! (�� e�t)u(t):

If � 62 [0; 1], then we can de�ne an inverse function

'(t) =
1

�� e�t
for t � 0;

that is bounded on [0;1), de�ning a bounded inverse operator on L2[0;1),

(�I �M)�1v(t) 7! 1

�� e�t
v(t):
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So such � is not in the spectrum, and spec(M) � [0; 1]. If �2[0; 1], the
inverse function '(t) will go to in�nity at a t = � log(�) (or t = 1 when

� = 0), and it can be deduced that there is no bounded inverse to the

operator (�I �M). Therefore spec(M) = [0; 1].

However notice that

(�� e�t)u(t) = 0 implies u(t) = 0; for almost every t,

so the operator M has no eigenvalues. �

The next proposition relates the spectral radius to the norm, and in

particular implies the spectral radius is always �nite, or equivalently that

the spectrum is a bounded set. The proof is based on the small gain result

of Theorem 3.9.

Proposition 3.12. Given an operator M 2 L(V), the inequality �(M) �
kMk holds.
Proof . Suppose j�j > kMk. Then setting Q =M=� we have kQk < 1 and

we invoke Theorem 3.9 to see that I �Q is invertible, with inverse�
I � M

�

��1
=

1X
k=0

Mk

�k
:

Now it follows immediately that

1X
k=0

Mk

�k+1
= ��1

�
I � M

�

��1
= (�I �M)�1; (3.5)

so � 62 spec(M). This means that spec(M) is included in the closed ball of

radius kMk, which completes the proof. �

The previous result generalizes the well-known relationship between spec-

tral radius and maximum singular value of a matrix, and in general there

is a gap between these two quantities. The spectral radius can, however,

be characterized exactly in terms of the norms of the powers of M .

Proposition 3.13. For M 2 L(V), the spectral radius satis�es �(M) =

limk!1 kMkk 1
k .

This statement implies, in particular, that the limit on the right hand side

exists for every M . We will not prove this result here, but remark that

this can be done by studying the radius of convergence of the power series

in (3.5), that has similar properties as scalar power series. For the case of

matrices, the reader is invited to give a more direct proof based on the

Jordan form.

A special case in which the spectral radius coincides with the norm, is

when the operator is self-adjoint.

Proposition 3.14. Let M 2 L(V), and suppose that M = M�. Then
�(M) = kMk.
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The proof is a simple exercise based on Propositions 3.7 and 3.13, and is left

for the reader. The following is an immediate corollary, that generalizes the

familiar matrix property that the square of ��(A) is equal to the maximum

eigenvalue of A�A.

Corollary 3.15. Let M 2 L(U ;V), where U ;V are Hilbert spaces. Then

kMk2 = �(M�M).

We remark, without proof, that the spectrum of a self-adjoint opera-

tor is contained in the real line, and a positive semi-de�nite operator has

spectrum in the non-negative half-line.

To conclude the section we will show a result regarding the invariance of

the spectral radius to changes in the order of multiplication of operators.

The key observation is the following.

Lemma 3.16. Consider the operators M 2 L(U ;V) and Q 2 L(V ;U),
so that MQ 2 L(V) and QM 2 L(U) are well de�ned. If IU , IV are the

identity operators on each space, then

IV �MQ is invertible if and only if IU �QM is invertible.

Proof . Assuming IU �MQ is invertible, we can explicitly construct the

inverse

(IU �QM)�1 = IU +Q(IV �MQ)�1M:

In other words, the operator on the right hand side is well-de�ned, and rou-

tine operations show it is the inverse of IU�QM . The converse implication

is analogous. �

Having shown this, we can state the following result regarding the

spectrum.

Proposition 3.17. Consider the operators M 2 L(U ;V) and Q 2
L(V ;U), so that MQ 2 L(V) and QM 2 L(U) are well de�ned. Then the

sets spec(MQ) and spec(QM) coincide except possibly for the value 0 2 C .

In particular,

�(MQ) = �(QM):

Proof . Consider 0 6= � 2 C . Then

� 62 spec(MQ) if and only if �I �MQ invertible,

if and only if I � M

�
Q invertible,

if and only if I �Q
M

�
invertible,

if and only if �I �QM invertible,

if and only if � 62 spec(QM);
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where the only non-trivial step follows from Lemma 3.16. Therefore the

spectra can di�er at most in the element � = 0; this potential di�erence

cannot a�ect the spectral radius. �

Example:

Consider two matrices M 2 Cm�n and Q 2 C n�m , where e.g. m < n. The

previous result implies that the nonzero eigenvalues of MQ 2 Cm�m and

QM 2 C n�n coincide. Clearly QM will have additional eigenvalues at 0,

since its rank is smaller than its dimension n.

�

So far in this chapter we have introduced a number of general mathe-

matical concepts and tools. We will now turn to some more customized

material.

3.3 Frequency domain spaces: signals

In the previous sections we have introduced, by way of examples, time

domain spaces of functions which will play the role of signals in our control

problems. Frequently in the sequel it will be advantageous to reformulate

problems in the frequency domain where they can be simpler to solve or

conceptualize. In particular we will see that L2 spaces are particularly

suited for a frequency domain treatment. In this section we will introduce

frequency domain spaces, and describe the various relationships they have

with the time domain spaces.

3.3.1 The space L̂2 and the Fourier transform

We now de�ne the complex inner product space L̂2(jR) which consists of

functions mapping jR to C n with the inner product

hû; v̂i2 :=
1

2�

Z 1

�1
û�(j!)v̂(j!)d! :

Thus a function û : jR ! C n is in L̂2(jR) if hû; ûi2 = kûk22 < 1. Here

we use the same notation for the norm and inner product of L̂2 as we did

for L2; which is intended to always be clear from the context as frequency

domain objects will be denoted by \b".
The Fourier transform of a function u : R ! C n , is de�ned to be

û(j!) =

Z 1

�1
u(t)e�j!tdt:

As usual, writing such an integral raises the issue of its convergence. It is

easy to see that the integral converges absolutely for u(t) 2 L1(�1;1),
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but we are interested in de�ning Fourier transforms on L2(�1;1), where

this strong convergence may not hold. One approach to avoid this di�culty

is to consider the \principal value" limit

û(j!) = lim
T!1

Z
T

�T
u(t)e�j!tdt:

We will adopt the following convention: û(j!) is de�ned as the above limit

at values of ! where it exists, and û(j!) = 0 otherwise. In this way the

transform is de�ned for any function which is integrable on �nite intervals.

For convenience we denote this operation by the map �, and write simply

û = �u

to indicate the above relationship. It can be shown (see the references) that

when u(t) 2 L2(�1;1) this limit exists for almost all !.

Given an function û : jR ! C n we de�ne the inverse Fourier transform

of û by

u(t) =
1

2�

Z 1

�1
û(j!)ej!td!;

with an analogous convention regarding the convergence of the integral,

and use u = ��1û to indicate this transformation.

As the notation would indicate, for certain classes of functions these

maps are inverses of each other. For our purposes, it su�ces to note that

for u 2 L2(�1;1) and v̂ 2 L̂2(jR), we have
u(t) = ��1(�u)(t); for almost every t,

and

v̂(j!) = �(��1v̂)(j!); for almost every !.

Furthermore, we have the following key result known as the Plancherel

theorem.

Theorem 3.18. With the Fourier transform and its inverse de�ned as

above:

(i) The map � : L2(�1;1) ! L̂2(jR), and given any u; v 2
L2(�1;1) the equality

hu; vi2 = h�u;�vi2 holds:

(ii) The map ��1 : L̂(jR) ! L2(�1;1), and if û; v̂ 2 L̂2(jR), then
hû; v̂i2 = h��1û;��1v̂i2 is satis�ed.

This theorem says that the Fourier transform is an invertible map between

the spaces L2(�1;1) and L̂2(jR), and more importantly, this map pre-

serves the inner product; thus the Fourier transform is a unitary operator
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which makes the two spaces isomorphic. In particular the theorem says for

any v̂ 2 L̂2(jR) and u 2 L2(�1; 1) we have

k�uk2 = kuk2 and k��1v̂k2 = kv̂k2 ;
namely norms are preserved under this mapping.

3.3.2 The spaces H2 and H
?

2 and the Laplace transform

In this section we introduce two subspaces of L̂2(jR) that will be important

in our studies of causal systems.

Recall the de�nition of L2[0;1), the Hilbert subspace of functions in

L2(�1;1) which are zero in (�1; 0). Given u 2 L2[0;1), we de�ne its

Laplace transform by the integral

û(s) := lim
T!1

Z
T

0

e�stu(t)dt =
Z 1

0

e�stu(t)dt; (3.6)

when this limit exists, and set û(s) = 0 at the divergent values of s. We will

soon see, however, that the integral converges absolutely when Re(s) > 0.

We use the notation

û = �u

to indicate this transformation. If we evaluate the transform at s = j!, for

some real number !, we see that since u(t) 2 L2[0;1),

û(j!) =

Z 1

0

e�j!tu(t)dt =

Z 1

�1
e�j!tu(t)dt

is the Fourier transform of u(t); therefore there is no source of ambiguity

in the notation \û"; depending on its argument it will denote the Laplace

transform or the Fourier restriction. Notice that by the Plancherel theorem,

û(j!) 2 L̂2(jR), and kûk2 = kuk2.
Next notice that for s 2 C , with Re(s) > 0, we have that the scalar

function de�ned by

gs(t) =

(
e�s

�
t for t � 0,

0 otherwise;

is in L2[0;1). Thus we see that if u(t) is scalar, the Laplace transform û(s)

is given by the following inner product

û(s) = hgs; ui2 ;
and therefore the integral (3.6) converges for all s satisfying Re(s) > 0.

This is also true if u(t) is vector-valued, applying the previous argument

for each component.

To state some additional properties of û(s) we introduce a new function

space H2 in the following de�nition.
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De�nition 3.19. A function û : �C+ ! C n is in H2 if

(a) û(s) is analytic in the open right half plane C+ ;

(b) For almost every real number !,

lim
�!0+

û(� + j!) = û(j!) ;

(c) sup
��0

Z 1

�1
jû(� + j!)j22 d! <1.

We remark that the supremum in (c) is always achieved at � = 0 when û

is in H2. Also that any function û which is only de�ned on the open half

plane C+ can be extended to �C+ so that it is in H2 if (a) holds, and (c) is

satis�ed when the supremum taken over C+ .

The key result we now state is that the Laplace transform of a function

L2[0;1) satis�es these properties, and furthermore every function in H2

can be obtained in this form.

Theorem 3.20.

(a) If u 2 L2[0;1) then �u 2 H2.

(b) If û 2 H2, then there exists u 2 L2[0;1) satisfying �u = û.

We will not prove this theorem, since it would take us too far a�eld, but

only make a few remarks. Both parts are non-trivial. Part (a) says that all

the requirements in De�nition 3.19 are met by a Laplace transform û(s) of

a function in L2[0;1).

Part (b) is called the Paley-Wiener theorem, and in essence says that

the mapping � has an inverse de�ned on H2. This mapping is the inverse

Laplace transform and can be shown to be given explicitly by

u(t) = (��1û)(t) =
1

2�

Z 1

�1
e�t � ej!tû(� + j!)dw;

where � is any positive real number. In particular it can be shown that

for û 2 H2, the above integral is independent of � and is equal to zero for

t < 0.

A useful consequence of Theorem 3.20 is the following:

Corollary 3.21. Let û and v̂ be functions in H2, and û(j!) = v̂(j!) for

every ! 2 R. Then û(s) = v̂(s) for every s 2 �C+ .

Proof . From Theorem 3.20 we �nd u(t) and v(t) in L2[0;1) such that

û = �u, v̂ = �v. Then û� v̂ = �(u� v).

Since û(j!)� v̂(j!) = 0, we conclude that the Fourier transform �(u�
v) = 0. Since � is an isomorphism we must have u(t)� v(t) = 0 for almost

all t. Now the Laplace transform gives û(s) = v̂(s), for every s 2 �C+ . �

From the previous corollary we �nd that there is a one to one corre-

spondence between functions in H2 and their restrictions to the imaginary
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axis. Thus we are justi�ed in identifying these two functions and writing

H2 � L̂2(jR), which involves some abuse of notation but no ambiguity. We

say a function û(j!) 2 L̂2(jR) is in H2 if it has an analytic continuation

û(s) to the right half plane which satis�es the conditions of De�nition 3.19.

Given this identi�cation, we can endow H2 with the inner product

inherited from L̂2(jR), de�ning for û and v̂ in H2

hû; v̂i2 =
1

2�

Z 1

�1
û�(j!)v̂(j!) d! :

In this way H2 is a Hilbert subspace of L̂2(jR).

Example:

To gain insight into De�nition 3.19, consider the function

û(s) =
es

s+ 1
:

It is easily shown that û(j!) 2 L̂2(jR), and also û(s) satis�es (a) and (b)

in the de�nition. However (c) is not satis�ed, so û(s) 62 H2.

In the time domain, it is not di�cult to show that

��1û = u(t) =

�
e�(t+1); for t � �1;
0; otherwise,

that is not a function in L2[0;1). �

Having identi�ed H2 as a subspace of L̂2(jR), we immediately won-

der about the di�erence between these two spaces, how do we need to

complement H2 to obtain all of L̂2(jR)?

To work towards an answer it is useful to return to the time domain;

here it is very easy to characterize the di�erence between L2(�1;1) and

L2[0;1). In particular, the space L2(�1; 0] is the orthogonal complement

of L2[0;1): functions in both spaces are orthogonal to each other, and any

function u(t) 2 L2(�1;1) can be trivially written as a sum

u(t) = u+(t) + u�(t); u+(t) 2 L2[0;1); u�(t) 2 L2(�1; 0]:

We denote this relationship by

L2(�1; 0] = L2[0;1)?:

Some properties of orthogonal complements in general Hilbert spaces are

included in the exercises at the end of the chapter.

Returning to the frequency domain, we are led to ask the question: what

is the Fourier image of L2(�1; 0]? Not surprisingly, the answer involves

the use of Laplace transforms. For u(t) 2 L2(�1; 0], de�ne the left sided

Laplace transform of u by

(��u)(s) :=
Z 0

�1
e�stu(t)dt;
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with the usual convention regarding convergence. Now it is easy to see that

this transform converges on the left hand plane s 2 C� . Furthermore, for
s = j! it coincides with the Fourier transform.

This symmetric situation leads to introduce the space H?
2 of functions

mapping �C� to C n which satisfy: ŷ is in H?
2 if

ŷ(�s) is a member of H2:

In particular, functions in H?
2 are analytic on C� and have limit almost

everywhere when approaching the imaginary axis horizontally from the left.

As expected we have the following result.

Proposition 3.22.

(a) If u 2 L2(�1; 0] then ��u 2 H?
2 ;

(b) If û 2 H?
2 , then there exists u 2 L2(�1; 0] satisfying ��u = û.

Proof . We reduce the statement to Theorem 3.20 by a symmetry in the

time axis. We have

u(t) 2 L2(�1; 0] if and only if u(�t) 2 L2[0;1);

if and only if �[u(�t)] 2 H2;

and it is easy to show that

�[u(�t)](s) =
Z 1

0

u(�t)e�stdt =
Z 0

�1
u(t)estdt = ��[u(t)](�s):

So �[u(�t)] 2 H2 if and only if ��u 2 H?
2 . �

Analogously to Corollary 3.21 it follows that functions in H?
2 are char-

acterized by their values on the imaginary axis, so once again we can write

H?
2 � L̂2(jR), identifying H

?
2 with a Hilbert subspace of L̂2(jR), con-

sisting of functions û(j!) which have analytic continuation to the left half

plane with the corresponding boundedness property.

To complete our picture we inquire as to how do the subspaces H2 and

H?
2 relate to each other? As the notation suggests, we have the following

answer.

Proposition 3.23. The space H?
2 is the orthogonal complement of H2 in

L̂2(jR). Namely, if û 2 H2 and v̂ 2 H?
2 then hû; v̂i2 = 0, and also every

function û(j!) 2 L̂2(jR) can be written uniquely as a sum

û(j!) = û+(j!) + û�(j!); û+ 2 H2; û� 2 H?
2 :

The proof is a direct application of the Plancherel theorem, since we have

established that as subspaces of L̂2(jR), H2 and H
?
2 are the Fourier images

of L2[0;1) and L2(�1; 0]. We leave details to the reader.
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3.3.3 Summarizing the big picture

It is useful now to summarize what we have learned about frequency do-

main signal spaces. The main conclusions are represented in the following

diagram which includes all the spaces and relevant transforms.

L2(�1; 0] � L2(�1; 1) � L2[0; 1)

��

????y
x???? ��1� �

????y
x???? ��1 �

????y
x???? ��1

H?
2 � L̂2(jR) � H2

The time domain space L2(�1;1) is isomorphic to the frequency domain

space L̂2(jR) by means of the Fourier transform, which is invertible and

preserves inner products. In the time domain we can identify the natural

subspaces L2(�1; 0] and L2[0; 1), which are mutually orthogonal. In the

frequency domain, these are mapped by the Fourier transform to the sub-

spaces H?
2 and H2 of L̂2(jR); functions in these spaces are de�ned over the

imaginary axis, but also admit analytic continuations respectively to each

half-plane, with bounded norms over vertical lines. The Laplace transforms

�� and � extend the Fourier transform to each analytic domain.

Examples:

To gain more insight into the frequency domain spaces that have been

introduced, it is useful to discuss which rational functions belong to each

of them. Recall from Chapter 2 that a scalar rational function is a ratio of

polynomials

û(s) =
p(s)

q(s)
;

and the concept extends to vectors or matrices with components of this

form. We will denote by RL̂2, RH2, and RH
?
2 the sets of rational functions

which belong, respectively, to L̂2(jR), H2, and H
?
2 . For example û(s) is in

RL̂2 if û(j!) 2 L̂2(jR).
It is not di�cult to show that a vector rational function is:

(i) in RL̂2 if it is strictly proper and has no poles on the imaginary axis;

(ii) in RH2 if it is strictly proper and has no poles on the closed right

half plane �C+ ;

(iii) in RH?
2 if it is strictly proper and has no poles on the closed left half

plane �C� .

The subspacesRL̂2, RH2, and RH
?
2 are themselves inner product spaces,

but are not complete. In particular it can be shown that they are dense

in their respective Hilbert spaces L̂2(jR), H2 and H
?
2 ; this means that for
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every element in H2 is the limit of a sequence of functions in RH2, and

analogously for the other spaces.

It follows directly from the partial fraction expansion that every function

in RL̂2 can be written as a sum of functions RH2, and RH
?
2 ; what is not so

immediate is that these subspaces are perpendicular, i.e. given a rational

function û(s) with no poles in �C+ , and another one v̂(s) with no poles in
�C� ,

1

2�

Z 1

�1
û�(j!)v̂(j!) d! = 0:

This latter fact follows from the preceding theory. �

Our next goal is to move from alternate representations for signals to

equivalent system representations.

3.4 Frequency domain spaces: operators

Having studied the structure of the L2 and L̂2 Hilbert spaces, we now

turn to the study of operators. Since the above spaces are isomorphic it is

clear that so must L(L2) and L(L̂2). Namely with eachM 2 L(L2) we can
associate ~M = �M��1 2 L(L̂2), where � is the Fourier transform. Thus

we can choose to study operators in whichever domain is most convenient.

In particular, we will see in this section that the frequency domain provides

a very elegant, exact characterization of an important class of operators on

L2: those which are linear and time-invariant.

Our study begins by introducing the class of multiplication operators on

L̂2(jR). First de�ne the space L̂1(jR) of matrix-valued functions jR !
Cm�n such that

kĜk1 = ess sup
!2R

��(Ĝ(j!)) <1:

The subscript 1 in this norm corresponds to the essential supremum over

frequency, analogously to the time domain L1 space introduced before.

Notice however that we are using matrix functions and taking a maximum

singular value norm at each frequency. More importantly, we should bear in

mind that, even in the scalar case, this space is not related to L1(�1;1)

via the Fourier transform.

The next result shows that L̂1(jR) is a representation for a set of linear
bounded operators on L̂2(jR).

Proposition 3.24. Every function Ĝ 2 L̂1(jR) de�nes a bounded linear

operator

M
Ĝ
: L̂2(jR) ! L̂2(jR) ;
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via the relationship (M
Ĝ
û)(j!) = Ĝ(j!)û(j!). Also

kM
Ĝ
k
L̂2!L̂2

= kĜk1 :

The operator M
Ĝ
is called, for obvious reasons, a multiplication operator;

we see that the induced norm of this operator is exactly kĜk1, which is

left as an exercise. We also have that Ĝ de�nes an operator on L2(�1;1),

denoted by G, and de�ned by

G = ��1M
Ĝ
� :

This operator has some very special properties. We call Ĝ(j!) the fre-

quency response of G, when G satis�es the last equation. The diagram

below summarizes the relationships between operators and spaces de�ned

so far.

L2(�1;1)
G

�! L2(�1;1)

�

????y
????y�

L̂2(jR)
M
Ĝ

�! L̂2(jR)

3.4.1 Time invariance and multiplication operators

In this section we investigate some of the temporal properties of multipli-

cation operators. Our discussion is brought into focus by de�ning the shift

operator S� , for � � 0, on time domain vector valued functions. If u is a

function R ! C n the action of the shift operator is given by

(S�u)(t) = u(t� �) :

The inverse S�1
�

is also de�ned on these functions, and satis�es

(S�1
�
u)(t) = u(t+ �):

Suppose u 2 L2(�1;1), and let y = S�u. Then taking Fourier transforms

we have

ŷ(j!) = e�j�! � û(j!) ;
so S� is represented in the frequency domain by the multiplication by e

�j�!

in L̂1(jR).
This brings us to the de�nition of time invariance: an operatorQmapping

L2(�1;1)! L2(�1;1) is time invariant if

S�Q = QS� ; for all � � 0 :

From this de�nition it is immediate to see that every multiplication opera-

torM
Ĝ
de�nes a time invariant G = ��1M

Ĝ
�. In fact, S�G is represented
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by

e�j�wĜ(j!) = Ĝ(j!)e�j�w ;

where the right hand expression is a representation for GS� . Thus G is

necessarily time invariant.

A more surprising fact is the converse, namely all time invariant operators

on L2(�1;1) can be represented in this way.

Theorem 3.25. An operator G : L2(�1;1) ! L2(�1;1) is time in-

variant if and only if it can be represented in L̂2(jR) by a multiplication by

a function

Ĝ 2 L̂1(jR) :
Thus this theorem says that the set of time invariant operators is in ex-

act correspondence with the set of functions L̂1(jR). In mathematical

terminology these spaces are isomorphic.

3.4.2 Causality with time invariance

We now formalize the notion of causality, which informally means that

the present is only determined by the past and present. It turns out that

the space of functions L̂1(jR) gives us representations for multiplication
operators that are not always causal. One of our goals is to classify those

operators that are both time invariant and causal.

To begin de�ne the truncation operator P� , for � 2 R, on vector valued

functions by

(P�u)(t) =

�
u(t); t � �;

0; t > �;

where u : R ! C n . The function (P�u)(t) has support on the interval

(�1; � ], which means it is zero outside this interval.

We de�ne an operator G : L2(�1;1)! L2(�1;1) to be causal if

P�GP� = P�G; (3.7)

for all � 2 R. If we apply this identity to some element u 2 L2(�1;1) we

get

P�GP�u = P�Gu : (3.8)

Notice that (P�u)(t) is zero for t > � . Thus the above equation says that

(Gu)(t), for t � � , only depends on u(t) for t � � . That is the past only

depends on the past.

The above de�nition of causality depends on the real parameter � , and

we now attempt to simplify this condition in the special case of G being a
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time-invariant operator. Suppose that G is time invariant and satis�es the

above causality condition for the special case where � = 0, namely

P0G(I � P0) = 0 holds. (3.9)

We now show that this in fact guarantees that the causality condition holds

for all � , and therefore that G is causal. To see this notice that the following

relationship holds, for any � � 0, immediately from the de�nitions of S�
and P� :

P�S� = S�P0 : (3.10)

That is, if we truncate a function over positive time and shift it by � , this

is the same as shifting it by � and then truncating it after time � .

Turning back to (3.9) we �x a positive � and see it holds if and only if

S�P0G(I � P0) = 0

is satis�ed, since S� is non singular. Now applying (3.10) we obtain the

equivalent conditions

0 = S�P0(I � P� ) = P0S�G(I � P� )

= P�G(I � P� )S� ;

where the latter two equalities follow from (3.10) and the fact that G is

time invariant. Finally, since the shift operator is invertible we see this

latter equality holds exactly when P�G(I � P� ) = 0. Therefore condition

(3.8) holds for every positive � whenever equation (3.9) does. For � < 0

we can use the same argument starting with P�S
�1
�� = S�1��P0 instead of

(3.10), to show that (3.9) implies (3.8). Clearly (3.9) is a special case of

(3.8), and so we have the following result.

Proposition 3.26. A time invariant operator G on L2(�1; 1) is causal

if and only if

P0G(I � P0) = 0 is satis�ed: (3.11)

We can also write the following equivalent characterization, that follows

by noticing that P0 and I�P0 are the natural projections from L2(�1;1)

to L2(�1; 0] and L2[0;1). We leave details to the reader.

Corollary 3.27. A time invariant operator G : L2(�1;1)! L2(�1;1)

is causal if and only if it maps L2[0;1) to L2[0;1).

In plain language this corollary says that a time invariant operator on

L2(�1;1) is causal exactly when it maps every function that is zero for

negative time to a function which also is zero on the negative time axis.
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3.4.3 Causality and H1

Having characterized causality in the time domain, we now return to fre-

quency domain spaces. The key question is: which multiplication operators

M
Ĝ
on L̂2(jR) correspond to causal time invariant operators in the time

domain?

A partial answer is given by translating Corollary 3.27 to the frequency

domain. From our discussion of signal spaces, it follows that

G = ��1M
Ĝ
� is causal if and only if M

Ĝ
maps H2 to H2:

Recall that H2 is made of functions û(j!) which have analytic continua-

tion to the right half plane, with a certain boundedness condition. Which

property of Ĝ(j!) is required for the product Ĝ(j!)û(j!) to have a similar

continuation? Clearly if Ĝ itself can be analytically extended to Ĝ(s), ana-

lytic and bounded on C+ , then Ĝ(s)û(s) would be in H2 whenever û(s) is.

Now, is this a necessary requirement for Ĝ? The following example suggests

that this is indeed the case.

Example:

Suppose G is a causal, time invariant operator between scalar L2 spaces.

Choose

u(t) =

(
e�t for t � 0,

0 otherwise:

Then û(s) = 1
s+1

and we have

ẑ(j!) = Ĝ(j!)
1

j! + 1
;

for a scalar function Ĝ. Thus we see that Ĝ(j!) = (j! + 1)ẑ(j!). Since

ẑ 2 H2, we can extend the domain of Ĝ, setting

Ĝ(s) := (s+ 1)ẑ(s)

so that Ĝ(s) is de�ned, and analytic, for all s 2 �C+ . It is also possible to

show that

kĜk1 = sup
s2C+

jĜ(s)j :

So we see from this generic scalar example that causality seems to imply

that Ĝ(s) is naturally de�ned on �C+ rather than just jR. �

This discussion leads us to de�ne the following important class of

functions

De�nition 3.28. A function Ĝ : �C+ ! C n�m is in H1 if

(a) Ĝ(s) is analytic in C+ ;
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(b) for almost every real number !,

lim
�!0+

Ĝ(� + j!) = Ĝ(j!);

(c) sup
s2�C+

��(Ĝ(s)) <1.

As with H2, it can be shown that H1 functions are determined by their

values on the imaginary axis. Thus we can regard H1 as a subspace of

L̂1(jR), with the same norm

kĜk1 = ess sup
!2R

��(Ĝ(j!)) :

We remark that the above quantity also coincides with the supremum in

De�nition 3.28(c). This maximum principle is discussed in the exercises.

We also point out that if a function Ĝ is only de�ned on C+ , but satis�es

(a) and the supremum condition in (c) restricted to C+ , then one can show

that its domain of de�nition can be extended to include the imaginary axis

so that it is in H1.
We are now ready to characterize causal, time invariant operators in the

frequency domain.

Theorem 3.29.

(a) Every Ĝ 2 H1 de�nes a causal, time invariant operator G on

L2(�1; 1), where z = Gu is de�ned by ẑ(j!) = Ĝ(j!)û(j!);

(b) For each causal, time invariant operator G on L2(�1;1) there exists

a function Ĝ 2 H1 such that z = Gu satis�es ẑ(j!) = Ĝ(j!)û(j!)

for all u in L2(�1;1).

The following diagram complements the one given before, focusing exclu-

sively on causal, time invariant operators, or equivalently for multiplication

functions Ĝ 2 H1.

L2[0;1)
G

�! L2[0;1)

�

????y
????y�

H2

M
Ĝ

�! H2

Examples:

As a �nal illustrative example, we turn once more to the case of rational

functions. We de�ne the sets RL̂1 and RH1 to consist of rational, matrix

functions that belong respectively to L̂1 and H1. It is not hard to see

that a matrix rational function is:



126 3. Linear Analysis

(i) in RL̂1 if it is proper and has no poles on the imaginary axis.

(ii) in RH1 if it is proper and has no poles on the closed right half plane
�C+ :

It follows from Chapter 2 that every function in RL̂1 can be expressed

in the form

Ĝ(j!) = C(j!I �A)�1B +D;

where A has no eigenvalues on the imaginary axis, and every function in

RH1 can be expressed in the form

Ĝ(s) = C(sI �A)�1B +D;

where A is Hurwitz. In the latter case, the time domain operator G =

��1M
Ĝ
�, restricted to L2[0;1), has the convolution form

u(t) 7!
Z

t

0

CeA(t��)Bu(�)d� +Du(t);

that was studied in Chapter 2 when we discussed minimal realizations.

A remark is in order regarding the RL̂1 case. When A has a right half

plane eigenvalue, rather than the previous convolution which would give a

causal, but unbounded map, the multiplication M
Ĝ
corresponds to a non-

causal, yet bounded operator. More insight into this distinction is provided

in the exercises. �

Finally we have the following theorem to end this section and indeed the

chapter.

Theorem 3.30.

(a) Every Ĝ 2 H1 de�nes a causal, time invariant operator G on

L2[0; 1), where z = Gu is de�ned by ẑ(j!) = Ĝ(j!)û(j!);

(b) If the operator G 2 L(L2[0;1) ) is time invariant, then there exists

a function Ĝ 2 H1 such that z = Gu satis�es ẑ(j!) = Ĝ(j!)û(j!),

for all u in L2[0; 1).

This theorem states that all LTI operators on L2[0; 1) are represented by

functions in H1. Notice this means that an LTI operator on L2[0; 1) is

necessarily causal. This is in contrast to the LTI operators on L2(�1; 1)

which we saw need not be causal.

We have thus concluded our survey of function spaces and basic oper-

ator theory, and are now ready to put these tools to use for the study of

controlled systems.
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3.5 Exercises

1. Let h ; i be the inner product on a Hilbert space. Use the fact that

hu+ �v; u+ �vi � 0 for every scalar � to derive the Cauchy-Schwarz

inequality. Deduce from it the triangle inequality.

2. Prove the submultiplicative inequality (3.2) for operators.

3. Prove Proposition 3.7.

4. Let H be a Hilbert space, and S a linear subspace. We de�ne the

orthogonal complement of S by

S? = fv 2 H : hv; si = 0 for all s 2 Sg:
A subspace S is closed if every convergent sequence with elements in

S has limit in S. The Projection Theorem states that if S is closed,

every v 2 H can be written in a unique way as

v = v1 + v2; v1 2 S; v2 2 S?;
v1 is called the projection of v in S, and PS 2 L(H) de�ned by

PS : v 7! v1 is the orthogonal projection operator.

a) If S is closed, show that (S?)? = S. What happens if S is not

closed?

b) Show that PS = P 2
S = P �S .

c) For any operator M 2 L(H), show that Im(M)? = ker(M�).
d) Consider the multiplication operator M

Ĝ
on H2, de�ned by

Ĝ(s) = s

s+1
: Describe the subspaces in part c) for this case.

Is Im(M) closed?

5. Consider the space C n�n of square matrices. Show that the Frobenius

norm jM jF makes this space a Banach algebra, but that this norm

cannot be induced by any vector norm in C n .

6. Consider the scalar spaces Lp(�1;1); for which value(s) of p does

the pointwise multiplication fg(t) = f(t)g(t) give the structure of a

Banach algebra?

7. Use the Jordan form to show that for any M 2 C n�n , �(M) =

limk!1 ��(Mk)
1
k .

8. Prove Proposition 3.14.

9. Given an operator M on a Hilbert space V , show that

�(M) = inf
D2L(V); invertible

kDMD�1k;

by proving the equivalence between:

(i) �(M) < 1;



128 3. Linear Analysis

(ii) There exists D 2 L(V), invertible such that kDMD�1k < 1;

(iii) There exists P 2 L(V), P > 0 such that

M�PM � P < 0:

Hint: Consider the series
P1

k=0(M
�)kMk:

10. Prove Proposition 3.24, in particular show that the induced norm is

exactly kĜk1. You can assume that Ĝ(j!) is a continuous function.

Hint: Choose an input that concentrates its energy around the peak

frequency response.

11. Consider the scalar transfer function Ĝ(s) = C(Is � A)�1B, with
A Hurwitz, and the corresponding time domain mapping G =

��1M
Ĝ
�, (� is the Fourier transform).

a) Recalling the de�nitions of the time domain spaces L2[0;1) and

L1[0;1), prove that

kGkL2!L1
= kĜkH2

:

b) Prove that kĜk2
H2

= CXC�, where X satis�es the Lyapunov

equation

AX +XA� +BB� = 0:

12. Consider the multiplication operator M
Ĝ
, where Ĝ(j!) = C(j!I �

A)�1B +D 2 L̂1(jR).
a) Characterize the adjoint M�

Ĝ
as a multiplication operator, and

give a state-space realization for the corresponding function.

b) Give conditions in terms of Ĝ(j!) that make:

(i) M
Ĝ
self-adjoint; (ii) M

Ĝ
� 0; (ii) M

Ĝ
> 0.

c) Assuming M
Ĝ

is self-adjoint, determine when hû; M
Ĝ
ûi > 0

holds, for all nonzero û 2 L̂(jR). Are these conditions equivalent
to M

Ĝ
> 0?

d) What is the spectrum of M
Ĝ
?

13. Maximum modulus principle. It follows from analytic function theory

that given a scalar function f(s) in H1 (analytic and bounded in

Re(s) > 0), its maximum modulus is achieved at the boundary, i.e.

sup
Re(s)>0

jf(s)j = ess sup
!

jf(j!)j = kfk1:

Using this fact, extend it to matrix-valued functions with the H1
norm.

14. Decompose the function û(s) = e
s

s+1
as a sum of functions in H2 and

H?
2 .
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15. a) Given two functions u, v in L2(�1;1) with Fourier transforms

satisfying

jû(j!)j � jv̂(j!)j for almost all ! 2 R: (3.12)

Show that there exists a linear time invariant operator G, with

kGk � 1, satisfying Gu = v. Can G always be chosen to be

causal?

b) Let Gu = v, kGk � 1, but G not necessarily time invariant. Is

(3.12) satis�ed?

16. Let Ĝ(j!) = 1
j!�1 . Express G = ��1M

Ĝ
�, as a convolution in

L2(�1;1), giving the corresponding convolution function g(t). Is

G causal?

17. Prove part (b) of Theorem 3.30. To do this show that the domain of

G can be extended to L2(�1; 1) by setting

Gu := lim
�!1

S�1
�
GS� (I � P� )u;

and that G on this extended domain is LTI. Now use Proposition 3.26

and Theorem 3.29.

18. Consider the operator Q on L2[0;1) de�ned in (3.3). Is it both time

invariant and causal? Derive the explicit formula for its adjoint Q�.
Is Q� time invariant?

Notes and references

For additional background material on linear functional analysis consult

[12] for an excellent introduction; also see [149] for more basic information

on Hilbert space. More advanced work on Hilbert space operator theory,

and a main source of references on this topic, is the book [54].

Proofs of all the results in this chapter (excepting Theorems 3.25 and

3.29) on the function spaces Lp, H2 and H1 can be found in [111]. These

proofs are for the scalar valued case, but easily generalize to the vector or

matrix valued case. In particular Lebesgue theory is developed there, and

proofs of the Plancherel and Paley-Wiener theorems are given. We point out

that some aspects of our presentation are non-standard, and di�erent from

[111]. In particular the de�nition of the Fourier transform, pointwise as a

principal value limit is proved in [68]. Also our de�nitions for H2 and H1
are made on the closed, rather than open, half-plane. These modi�cations

to the usual de�nitions have been done for clarity of exposition, and do not

a�ect any results.

Theorem 3.25 is proved in [11, Thms71-72] for the scalar case; the ex-

tension to the vector case given here is routine. Theorem 3.29 follows from
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Theorem 3.25 and Proposition 3.26, and standard analytic continuation

theory; see [111]. See also [139] for more information on time invariant op-

erators and functions. The book [37] has many results on the discrete time

operator valued case. This book also contains much additional information

on the connections between function theory and operator theory, for both

the matrix and operator valued cases, and is a particularly good reference

for such results as related to control theory.

Classic references for work on Hp and related spaces are [32, 57]; an-

other important reference is [43]. Additional advanced information on these

spaces in the operator valued case can be located in [129, 110].
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4

Model realizations and reduction

In this chapter we start our investigation of quantitative input and output

properties of systems. To do this we will require the state space systems the-

ory of Chapter 2 combined with the new viewpoint and framework gained

in the preceding chapter. We �rst consider issues related to the relative con-

trollability and observability of system states, and their relationships with

the overall input-output characteristics of a system. We then turn to the

important question of systematically �nding reduced order approximations

to systems. We will develop a powerful technique to accomplish this, and

the operator perspective of the previous chapter will play a central role.

4.1 Lyapunov equations and inequalities

In this section we describe a basic tool for the study of stability, control-

lability and observability in linear systems. This topic is closely related to

the material in Chapter 2, but we have chosen to present it in this chapter,

where it will be extensively applied for the �rst time.

Lyapunov equations come in the two dual forms

A�X +XA+Q = 0

and

AX +XA� +Q = 0:

In both cases A, Q are given square matrices, and X is the unknown. For

concreteness we will focus on the �rst case, but by the trivial substitution
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of A by A�, all the following properties have their dual counterpart. Notice
in particular that the Hurwitz property is preserved by the \�" operation.
We now see how Lyapunov equations can be solved explicitly when A is

Hurwitz.

Theorem 4.1. Suppose A and Q are square matrices and that A is

Hurwitz. Then

X =

Z 1

0

eA
�
�QeA�d� (4.1)

is the unique solution to the Lyapunov equation A�X +XA+Q = 0.

Proof . First, we verify that the given X is a solution, observing that

A�X +XA =

Z 1

0

d

d�
feA��QeA�gd� = eA

�
�QeA�

��1
0

= �Q:

It remains to show that it is the unique solution. For this purpose, de�ne

the linear mapping � : C n�n ! C n�n by

�(X) := A�X +XA ;

where X 2 C n�n . Now for any matrix Q 2 C n�n we have seen that the

equation

�(X) = Q

has a solution. This means that the dimension of the image of � is n2; but

the dimension of the domain of � is also n2 and therefore

ker� = 0 :

This means �(X) = Q has a unique solution for each Q. �

In terms of computation, we emphasize that the Lyapunov equation is

linear in the matrix variable X , and therefore it is in essence no more than

a system of n2 linear equations in the n2 entries of X , that can be solved by

standard techniques. In particular when A is Hurwitz we are guaranteed to

have a unique solution; direct computation of the integral in (4.1) is never

required.

Another useful property of the Lyapunov solution is that�
I 0

X I

� �
A 0

Q �A�
��

I 0

�X I

�
=

�
A 0

A�X +XA+Q �A�
�
=

�
A 0

0 �A�
�
:

Thus X can also be found by performing an eigenvalue decomposition.

From now on we focus on the case where Q = Q�, for which one al-

ways seeks solutions X = X� to the Lyapunov equations. The following

result shows that the Hurwitz nature of A is directly related to the sign

de�niteness of the solutions.

Proposition 4.2. Suppose Q > 0. Then A is Hurwitz if and only if there

exists a solution X > 0 to the Lyapunov equation A�X +XA+Q = 0.
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Proof . We �rst establish the \only if" direction. Since A is Hurwitz we

already know that the unique solution is

X =

Z 1

0

eA
�
�QeA�d�:

Now since Q > 0 it is straightforward to verify that X > 0. We leave details

as an exercise.

For the converse, suppose X > 0 solves the equation. If � is an eigenvalue

of A, with eigenvector v 6= 0, we have

0 = v�(A�X +XA+Q)v = ��v�Xv + �v�Xv + v�Qv:

Since v�Xv > 0 we have

2Re(�) = � v
�Qv
v�Xv

< 0;

so A is Hurwitz. �

We make the following remarks:

� The preceding proof is purely algebraic; an alternative argument

which helps explain our terminology, is to consider the Lyapunov

function V (x) = x�Xx as a tool to show that _x = Ax is asymptot-

ically stable. This approach can be found in standard references on

di�erential equations.

� The preceding result remains true if the hypothesisQ > 0 is weakened

to Q = C�C � 0, with (C;A) observable. The veri�cation of this

stronger theorem is covered in the exercises at the end of the chapter.

In that case, the Lyapunov solution is denoted by Yo, satisfying

A�Yo + YoA+ C�C = 0; (4.2)

and is called the observability gramian of (C;A); this is the topic of

the next section.

� It is sometimes convenient to rewrite Proposition 4.2 as a Linear

Matrix Inequality:

Corollary 4.3. The matrix A is Hurwitz if and only if there exists X > 0

satisfying

A�X +XA < 0:

We �nish the section elaborating some more on such Lyapunov

inequalities. In general, these have the form

A�X +XA+Q � 0

or the strict version

A�X +XA+Q < 0:
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Focusing on the case where A is Hurwitz, it is clear that these two LMIs

always have solutions. To see this notice that the left hand side of the

inequality in the above corollary can be made less than any matrix simply

by scaling any solution X . Now we ask: how do the solutions to these

inequalities relate to the corresponding Lyapunov equation solution? We

have the following result, which is left as an exercise.

Proposition 4.4. Suppose that A is Hurwitz, and X0 satis�es A�X0 +

X0A+Q = 0, where Q is a symmetric matrix. If X satis�es A�X +XA+

Q � 0, then

X � X0:

This concludes our general study of Lyapunov equations. We now focus

on the problem of quantifying the degree of controllability and observability

of state-space realizations.

4.2 Observability operator and gramian

We begin our study by focusing on the autonomous system given by

_x(t) = Ax(t); x(0) = x0 2 C n

y(t) = Cx(t);

where A is a Hurwitz matrix. This is our usual state space system with the

input set to zero, and a non-zero initial condition on the state. The solution

to this system is CeAtx0, for t � 0. De�ne the observability operator 	o :

C n ! L2[0;1) by

x0 7!
(
CeAtx0 for t � 0;

0 otherwise.

This operator is analogous to the map 	 encountered in Chapter 2; here,

however, we exploit the fact that A is Hurwitz. In particular, we can easily

show there exist positive constants � and � satisfying

jCeAtx0j � � � e��tjx0j ;
for all initial conditions x0 and times t. If we set y = 	ox0 this gives

kyk2 � �p
2�

jx0j ;

so we see that y 2 L2[0;1) and 	o is a bounded operator. Let us now take

a more careful look at the energy of y = 	ox0, for x0 2 C n . It is given by

kyk22 = h	ox0;	ox0i = hx0;	�o	ox0i ;
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where 	�
o
: L2[0;1) ! C n and is the adjoint of 	o. An exact expression

for the adjoint operator can be found from its de�nition and the following

equations. For each z 2 L2[0;1) and x0 2 C n

h	�
o
z; x0iCn = hz;	ox0i2 =

Z 1

0

z�(�)CeA�x0d�

=

�Z 1

0

eA
�
�C�z(�)d�

��
x0

=

�Z 1

0

eA
�
�C�z(�)d�; x0

�
Cn

:

Thus we see that 	�
o
is given by

	�z =
Z 1

0

eA
�
�C�z(�)d� ;

for z 2 L2[0;1). Now the 2-norm of y = 	ox0 is given by hx0;	�o	ox0i
and we have

	�
o
(	ox0) =

Z 1

0

eA
�
�C�CeA�x0d�

=

�Z 1

0

eA
�
�C�CeA�d�

�
x0 = (	�

o
	o)x0 :

Therefore the operator 	�
o
	o is given by the matrix

Yo := 	�
o
	o =

Z 1

0

eA
�
�C�CeA�d� ;

which is the observability gramian of (C;A), already encountered in the

previous section. In fact, using Theorem 4.1 it is clear that Yo satis�es the

Lyapunov equation (4.2).

This gramian is positive semi-de�nite

Yo � 0;

and as mentioned before is positive de�nite when (C;A) is observable. How-

ever the previous calculation shows that the gramian carries quantitative

information in addition to the a yes or no answer regarding observability.

We have shown that the energy of the output y = 	ox0, starting from an

initial condition x0 2 C n , is given by

kyk22 = x�0Yox0 : (4.3)

In particular, if we only consider states that satisfy jx0j = 1, then clearly

some of these states will yield higher output norms kyk2 than others.

Therefore the gramian measures \how observable" a given initial condition

is.
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Figure 4.1. Observability ellipsoid

This idea can be described geometrically in a very intuitive way. Consider

the vector

Y
1
2
o x0;

where x0 has unit length. This vector has length equal to the 2-norm of

y, from (4.3), and as we will see contains directional information as well.

De�ne the set

E := fY
1
2
o x0 : x0 2 C n and jx0j = 1g ;

which is the collection of all such vectors. Since Yo is positive semi-de�nite

this set is an ellipsoid, and is depicted two dimensionally in Figure 4.2.

This shape is called the observability ellipsoid, and tells us the output

norm associated with a particular direction in state space. Let

�1 � �2 � � � � � �n � 0 ;

be the eigenvalues of Y
1
2
o and

v1; : : : ; vn ;

their respective unit-norm eigenvectors. Then the vk give the directions of

the principal axes of the ellipsoid, and the �k the length of each axis.

If �k = 0 for some k, the corresponding vk produces no output energy

and is therefore unobservable. In fact the span of all vk's with �k = 0 is

precisely the unobservable subspace NCA from Chapter 2. Geometrically,

the ellipsoid degenerates into a subspace of lower dimension, orthogonal to

this space.

If �k, �l are both nonzero but, for example, �k >> �l, then the output

energy resulting from initial state vl is much smaller than that observed

when the initial condition is vk. Thus both states are observable, but intu-

itively state vk is \more observable" than state vl. We conclude that the

observability gramian provides us with a way to assess the relative observ-

ability of various directions in the state space. When a state corresponds

to a large eigenvalue �k we say it is strongly observable; if instead �k > 0
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is small compared with the other eigenvalues we say the state is weakly

observable.

As an aside let us see the signi�cance of this gramian for determining

the observability of a pair (C;A) where A is Hurwitz. In Chapter 2 we saw

how this could be done by checking whether the matrix

Q� =
�
C� A�C� � � � (A�)n�1C�

�
has rank n. Another alternative, also based on rank, is the PBH test. This

raises the question of numerically determining the rank of a matrix, in par-

ticular the question of numerical tolerance for this determination; perhaps

one would check the eigenvalues of Q�Q, but we have no interpretation

assigned to the size of these eigenvalues. In particular, you will show in

the exercises that these are unrelated to the eigenvalues of Yo. In short,

the above rank test can only provide a yes or no answer. In contrast, the

eigenvalues of Yo have a clear association with the degree of observability

and thus provide a much more sound numerical method for observability

assessment.

In line with this reasoning, it seems natural that these eigenvalues could

be used as a basis of a model reduction scheme, based on the elimination

of weakly observable states. We will return to this idea later, but �rst we

study the dual situation of controllability.

4.3 Controllability operator and gramian

Here our focus is the dual idea of that pursued in the preceding sec-

tion. Given a matrix pair (A;B) de�ne the controllability operator 	c :

L2(�1; 0]! C n by

u 7!
Z 0

�1
e�A�Bu(�)d� :

Notice this can be thought of as the response of the system described by

_x(t) = Ax(t) +Bu(t); x(�1) = 0 (4.4)

to an input function u 2 L2(�1; 0] where the output is the vector x(0).

To see the signi�cance of this operator, we ask the following question:

Given x(0) 2 C n with unit norm, jx0j = 1, what u 2 L2(�1; 0]

solves

	cu = x0

with the smallest norm kuk2?
In system terms this question is, what is the input with smallest energy

kuk2 which drives the state in (4.4) to satisfy x(0) = x0 at time zero?
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Clearly if the matrix pair (A;B) is not controllable it may not be possible

even to satisfy 	cu = x0, so for the next result we focus on the case where

the pair is controllable.

Proposition 4.5. Suppose that (A;B) is controllable. Then

(i) the matrix 	c	
�
c
=: Xc is nonsingular;

(ii) For any x0 2 C n , the input uopt := 	�
c
X�1
c
x0 is the element of

minimum norm in the set

fu 2 L2(�1; 0]; 	cu = x0g: (4.5)

Proof . First, we �nd an expression for Xc. Proceeding analogously to the

observability case, the de�nition of the adjoint implies that 	�
c
: C n !

L2(�1; 0] is given by

	�
c
: � 7!

(
B�e�A

�
t� for t � 0;

0 otherwise,

and therefore

Xc = 	c	
�
c
=

Z 0

�1
e�AtBB�e�A

�
tdt =

Z 1

0

eAtBB�eA
�
tdt;

called the controllability gramian of the matrix pair (A;B). Notice that

this is an in�nite horizon version of the de�nition given in Chapter 2, and

also that Xc satis�es the Lyapunov equation

AXc +XcA
� +BB� = 0;

dual to the observability case. It follows from here that (A;B) controllable

if and only if Xc > 0, which establishes (i).

Next, we verify that given x0 2 C n ,

	cuopt = 	c	
�
c
X�1
c
x0 = x0 ;

and thus u = uopt belongs to the set of allowable inputs described in (4.5).

So it remains to show, for a general u in this set, that kuk2 � kuoptk. De�ne
the operator

P = 	�
c
X�1
c

	c

on L2(�1; 0], and observe that P 2 = P = P �. An operator satisfying these
identities is called an orthogonal projection. In particular, it satis�es

hPu; (I � P )ui = hu; P (I � P )ui = 0;

and consequently

kuk22 = kPuk22 + k(I � P )uk22 � kPuk22;
for any u 2 L2(�1; 0]. This is called the Bessel inequality.
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Now let u 2 L2(�1; 0] be any function satisfying 	cu = x0. Applying

	�
c
X�1
c

on both sides we get

Pu = 	�
c
X�1
c

	cu = 	�
c
X�1
c
x0 = uopt;

so the Bessel inequality gives

kuk22 � kuoptk22:

�

The proposition says that if we want to reach a state x0 then

uopt = 	�
c
X�1
c
x0

is the most economical input in terms of energy. This input energy is given

by

kuoptk22 = h	�
c
X�1
c
x0;	

�
c
X�1
c
x0i

= hX�1
c
x0;	c	

�
c
X�1
c
x0i

= x�0X
�1
c
x0:

We now provide a geometric interpretation of the controllability gramian,

similar to that for Yo. The key question is: what are all the �nal states

x0 = 	cu

that can result from an input u 2 L2(�1; 0] of unit norm? The answer

is given in the following proposition, which holds even if the pair (A;B)

is not controllable. We will, however, concentrate here on the controllable

case; the general case is covered in the exercises at the end of the chapter.

Proposition 4.6. The following sets are equal:

(a) f	cu : u 2 L2(�1; 0] and kuk2 � 1g;

(b) fX
1
2
c xc : xc 2 C n and jxcj � 1g.

Proof . We �rst show that set (a) is contained in set (b): choose u 2
L2(�1; 0] with kuk2 � 1. Set

xc = X
� 1

2
c 	cu;

which has norm

jxcj2 = hX� 1
2

c 	cu;X
� 1

2
c 	cui = hu;	�

c
X�1
c

	cui = hu; Pui = kPuk22 � kuk22 � 1:

This means that 	cu = X
1
2
c xc is in the set (b).

We now demonstrate that set (b) is contained in set (a). Let xc be any

vector that has length less than or equal to one. We choose the input of
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minimum norm which gives 	cu = X
1
2
c xc. From the previous results this

input exists and its norm is

kuoptk22 = (X
1
2
c xc)

�X�1
c

(X
1
2
c xc) = jxcj22 � 1:

Therefore X
1
2
c xc is in the set (a).

�

This result says that all the states reachable with u satisfying kuk2 � 1

are given by

X
1
2
c xc ;

where jxcj � 1. Notice the norm squared of any such state is given by

x�
c
Xcxc. We de�ne the controllability ellipsoid by

Ec = fX
1
2
c xc : xc 2 C n and jxcj = 1g :

This gives us the boundary of the set given in the proposition. Let

�1 � �2 � � � � � �n � 0 ;

be the eigenvalues of X
1
2
c and

v1; : : : ; vn

their corresponding orthonormal eigenvectors. Then clearly the principal

axes of the ellipsoid Ec are given by

�kvk :

The unit vectors v1; : : : ; vn give a basis for the state space and the values

�1; : : : ; �n tell us that given an input kuk2 = 1, the largest we can make

a state in the direction vk is �k. Thus we conclude that if �k = 0, then vk
is an unreachable state. In the same vein, if �k >> �l then state direction

vk is \more" controllable than direction vl. As with observability this gives

rise to the terms strong and weak controllability.

4.4 Balanced realizations

The preceding two sections have given us geometric ways, in terms of

the gramians introduced, to assess which directions in the state space are

strongly or weakly controllable and observable. We now look at our usual

system given by

_x(t) = Ax(t) +Bu(t); x(0) = x0

y(t) = Cx(t);
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for t � 0. Here the direct feedthrough term given by the D-matrix is not

included, since it makes no di�erence to our investigation. We are inter-

ested in �nding a natural basis for this state space that gives some idea

as to which states dominate the system behavior. In our study so far we

concluded that states corresponding to small eigenvalues of the observabil-

ity gramian are not very observable. Does this mean such states do not

contribute much to the input-output behavior of the above system? The

answer is not necessary since such states may be very controllable. This

phenomenon is easily appreciated by looking at Figure 4.2, which shows

both the observability and controllability ellipsoids on the same plot.

Figure 4.2. Unbalanced system ellipsoids

As this picture shows, these two ellipsoids need not be aligned, and there-

fore we can have a situation as drawn here, where the major and minor

axes of the ellipsoids are nearly opposite. Therefore we reason that the

most intuition would be gained about the system if the controllability and

observability ellipsoids were exactly aligned, and is certainly the natural

setting for this discussion. This raises the question of whether or not it is

possible to arrange such an alignment by means of a state transformation;

answering this is our next goal.

A change of basis to the state space of the above system yields the

familiar transformed realization

~A = TAT�1; ~B = TB; and ~C = CT�1 ;

where T is a similarity transformation. The controllability gramian

associated with this new realization is

~Xc =

Z 1

0

e
~A� ~B ~B�e

~A��d�

=

Z 1

0

TeA�T�1TBB�T �(T �)�1eA
�
�T �d�

= TXcT
�
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Similarly the observability gramian in the transformed basis is

~Yo = (T �)�1YoT�1 :

The above are called congruence transformations, which typically arise

from quadratic forms under a change of basis. The following result concerns

simultaneous diagonalization of positive de�nite matrices by this kind of

transformation.

Proposition 4.7. Given positive de�nite matrices X and Y , there exists

a nonsingular matrix T such that

TXT � = (T �)�1Y T�1 = �

where � is a diagonal, positive de�nite matrix.

Proof . Perform a singular value decomposition of the matrix X
1
2Y X

1
2 to

get

X
1
2Y X

1
2 = U�2U� ;

where U is unitary and � is diagonal, positive de�nite. Therefore we get

��
1
2U�X

1
2 Y X

1
2U��

1
2 = �:

Now set T�1 = X
1
2U��

1
2 and the above states that (T�1)�Y T�1 = �.

Also

TXT � = (�
1
2U�X� 1

2 )X (X� 1
2U�

1
2 ) = �:

�

Applying this proposition to the gramians, the following conclusion can

be drawn:

Corollary 4.8. Suppose (A;B;C) is a controllable and observable realiza-

tion. Then there exists a state transformation T such that the equivalent

realization ( ~A; ~B; ~C) = (TAT�1; TB;CT�1) satis�es

~Xc = ~Yo = �

with � > 0 diagonal.

A state space realization such that the controllability and observability

gramians are equal and diagonal, is called a balanced realization. The pre-

vious corollary implies that there always exists a balanced realization for

a transfer function in RH1; in fact, starting with any minimal realization

(which will necessarily have A Hurwitz), a balanced one can be obtained

from the above choice of state transformation.

Clearly the controllability and observability ellipsoids for the system are

exactly aligned when a system is balanced. Thus the states which are the

least controllable are also the least observable. Balanced realizations play

a key role in the model reduction studies of the rest of this chapter.
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Before leaving this section, we state a generalization of Proposition

4.7 which covers the general case, where the original realization is not

necessarily controllable or observable.

Proposition 4.9. Given positive semi-de�nite matrices X and Y there

exists a nonsingular matrix T such that

(a) TXT � =

2664
�1

�2

0

0

3775,

(b) (T �)�1Y T�1 =

2664
�1

0

�3

0

3775,
where the matrices �k are diagonal and positive de�nite.

When applied to the gramians Xc and Yo, we �nd that if the system is

either uncontrollable or unobservable, then each of the �k blocks of ~Yo and
~Xc have the following interpretation:

� �1 captures controllable and observable states

� �2 captures controllable and unobservable states

� �3 captures observable and uncontrollable states

� �4 captures unobservable and uncontrollable states.

Under such a transformation the state matrix ~A has the form

~A =

2664
~A1 0 ~A6 0
~A2

~A3
~A4

~A5

0 0 ~A7 0

0 0 ~A8
~A9

3775 ;

which is the so-called Kalman decomposition; this can be veri�ed from

the various invariance properties of the controllability and observability

subspaces.

4.5 Hankel operators

In the previous sections we have introduced an input-to-state operator 	c

and a state-to-output operator 	o that where naturally related to the de-

gree of controllability and observability of a state-space system. It seems

natural, then, that these pieces should come together to study input-output

properties of a system. These ideas are now explored.
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We begin with a causal, bounded input-output operatorG : L2(�1;1)!
L2(�1;1) described by the state space convolution

(Gu)(t) :=

Z
t

�1
CeA(t��)Bu(�)d�;

where A is a Hurwitz matrix. In the language of Chapter 3, this operator

is G = ��1M
Ĝ
�, where Ĝ(s) = C(sI � A)�1B is a transfer function in

RH1. We focus on the strictly proper case; the presence of a D term would

make no di�erence to the discussion in this section.

Now we de�ne the Hankel operator �G : L2(�1; 0]! L2[0;1) of G by

�G := P+G
��
L2(�1;0]

;

where G
��
L2(�1;0]

denotes the restriction of G to the subspace L2(�1; 0],

and P+ is the operator projects a signal in L2(�1;1) into L2[0;1) by

truncation. In other words, �G takes an input supported in the \past", and

maps it to the future output, as illustrated in Figure 4.3 for scalar inputs

and outputs.

u

Gu

�Gu

t

t

t

Figure 4.3. Results of G and �G operating on a given u 2 L2(�1; 0].

The Hankel operator is closely related to the controllability and observ-

ability operators, due to the causality of G; in fact, if u(t) is supported in

the past, the future output P+y depends on u only through the initial state

x(0); thus we can think of composing two stages:

� 	c which maps u 2 L2(�1; 0] to x(0).

� 	o which maps x(0) to y(t); t � 0, with no input applied for t � 0.
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It is not di�cult to formalize this idea and obtain

�G = 	o	c;

using the de�nitions of these operators; we leave details to the reader. Thus

the following commutative diagram is satis�ed.

L2[0; 1)L2(�1; 0]

C n

�G

	c 	o

Notice that �G has at most rank n for a state space system of order n;

namely the dimension of Im(�G) is at most n.

Our �rst result on the Hankel operator tells us how to compute its

L2(�1; 0] ! L2[0;1) induced norm. Below �max denotes the largest

eigenvalue of the argument matrix.

Proposition 4.10. The norm of �G is given by

k�GkL2!L2
= (�max(YoXc) )

1
2 ;

where Yo and Xc are the gramians of the realization (A;B;C).

Proof . We begin with the following identity established in Chapter 3:

k�Gk2 = �(��
G
�G) = �(	�

c
	�
o
	o	c) ;

where �(�) denotes spectral radius. We recall as well that the spectral radius

is invariant under commutation, and obtain

k�Gk2 = �(	�
o
	o	c	

�
c
) = �(YoXc) :

Now, YoXc is a matrix, and has only non-negative eigenvalues; for this

latter point, observe that the nonzero eigenvalues of YoXc coincide with

those of X
1
2
c YoX

1
2
c � 0.

Therefore �(YoXc) = �max(YoXc), which completes the proof. �

We remark that it can also be shown that ��
G
�G, a �nite rank operator,

has only eigenvalues in its spectrum, namely the eigenvalues of YoXc in

addition to the eigenvalue zero. For this reason, in analogy to the matrix

case, the square roots of the eigenvalues of YoXc are called the singular

values of �G or the Hankel singular values of the system G. We order these

and denote them by

�1 � �2 � � � � � �n :
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Clearly �1 = k�Gk.
Since the operator �G depends only on the input-output properties of G,

it is clear that the Hankel singular values must be the same for two equiv-

alent state-space realizations. This can be veri�ed directly for realizations

related by a state transformation T . Recall that the gramians transform

via

~Y0 = (T�1)�YoT�1;

~Xc = TXc T
� ;

and therefore

~Y0 ~Xc = (T�1)�YoXcT
�:

Thus we have ~Y0 ~Xc and YoXc are related by similarity and their eigenvalues

coincide.

If we have realizations of di�erent order (one of them non-minimal) of a

given Ĝ, their Hankel singular values can only di�er on the value 0, which

appears due to lack of observability or controllability; in fact, the minimal

order can be identi�ed with the number of non-zero Hankel singular values

of any realization.

In the special case of a balanced realization Xc = Y0 = �, we see that

the diagonal of � is formed precisely by the Hankel singular values.

We now turn to the question of relating the Hankel singular values to the

norm of the original operator G. While these are di�erent objects we will

see that important bounds can be established. The �rst one is the following.

Proposition 4.11. With the above de�nitions,

�1 = k�Gk � kGk = kĜk1:

Proof . Since the projection P+ has induced norm 1, then

k�Gk = kP+G
��
L2(�1;0]

k � kG
��
L2(�1;0]

k � kGk:

For the last step, notice that the norm of an operator cannot increase when

restricting it to a subspace. In fact, it is not di�cult to show that this step

is an equality. �

Thus the largest Hankel singular value provides us with a lower bound

for the H1 norm of the transfer function Ĝ. The next result provides an

upper bound in terms of the Hankel singular values.

Proposition 4.12. Suppose Ĝ(s) = C(Is�A)�1B and that A is a Hurwitz

matrix. Then

kĜk1 � 2(�1 + � � �+ �n) ;

where the �k are the Hankel singular values associated with (A;B;C).
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A proof with elementary tools is given in the exercises at the end of the

chapter. In the next section we will see a slight re�nement of this bound

using more advanced methods.

The Hankel operator plays an important part in systems theory, as well

as pure operator theory, and is intimately related to the question of ap-

proximation in the k � k1 norm. The latter has many connections to robust

control theory; in this chapter we will use it in connection to model re-

duction. For further discussion consult the references at the end of the

chapter.

4.6 Model reduction

We are now ready to consider approximation of systems. Frequently in

modeling or control synthesis it is of value to use a simple model that ap-

proximates a more complex one. In our context, complexity is measured by

the dimensionality of state-space realizations. Given a system, we would like

to reduce the order of a state-space realization, while keeping the system

input output properties \approximately" the same.

An extreme case of model reduction we have already studied, is the

elimination of uncontrollable or unobservable states. As shown in Chapter

2, this can be done without a�ecting the input output transfer function, i.e.

with \zero error". We are now ready to take the next step, that is to allow

some error, and study the following problem: given a transfer function Ĝ(s)

of order n, �nd a transfer function Ĝr(s) of order r < n, such that Ĝ and

Ĝr are \close".

Before this problem has a precise meaning, a notion of distance between

transfer functions must be chosen; indeed there are many metrics that can

be used, all based on the input-output behavior of the systems. We will

focus on the H1 model reduction problem where

dist(Ĝ; Ĝr) = kĜ� Ĝrk1 = kG�GrkL2!L2
:

This choice deserves some comment.

In the �rst place, with this choice we are restricting our model reduction

to stable systems G, i.e. systems which correspond to bounded operators

on L2. Later on in the course we will remark on how these techniques can

be extended to study distance between unstable systems.

Secondly, even under the stability restriction, there are other system

norms which could be candidates for model approximation. The reason

for our preference towards an induced norm can be illustrated as follows.

Suppose our system G is to be connected in cascade with another system

H ; if we are going to use the approximation Gr instead of G, we would

like to be able to easily quantify the error between the composed systems

HG and HGr. For any norm satisfying the submultiplicative inequality we
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have

kHG�HGrk = kHk � kĜ� Ĝrk;
which tells us how to propagate our error to the cascaded system. Thus we

see the convenience of operator norms, in particular the H1 norm.

We recapitulate our discussion by stating more explicitly the H1 model

reduction problem:

Given: transfer function Ĝ(s) =

�
A B

C D

�
= C(sI �A)�1B+

D, where A 2 Rn�n is Hurwitz.

Find: lower order function Ĝr(s) =

�
Ar Br

Cr Dr

�
where Ar 2

Rr�r such that

kĜ� Ĝrk1 is minimized:

An immediate observation is that we can assume D = 0, since�
A B

C D

�
� Ĝr =

�
A B

C 0

�
� (Ĝr �D)

and feed through terms do not a�ect the order of the realization.

What is not so clear is whether Dr can be set to zero; in other words, is

the best approximation to a strictly proper system, itself strictly proper?

Indeed there may be advantages in using Dr 6= D, as is shown in the

exercises at the end of the chapter; in this section, however, we concentrate

on the case where both Ĝ and Ĝr are strictly proper.

As stated, the H1 model reduction problem is open, in the sense that

there is no known computationally tractable method to obtain the optimal

approximation of a given order. In the absence of this optimal solution, we

will study model reduction methods in terms of bounds on the approxi-

mation error. This includes both lower bounds on the error achievable by

any model reduction method, and upper bounds on the error achieved by

a speci�c scheme, in our case the balanced truncation method.

4.6.1 Limitations

Faced with the approximation problem above it is natural for us to ask

whether there are some fundamental limits to how well we can approximate

a given system with a lower order one. To work towards the answer, as

well as to build intuition, we begin by studying a matrix approximation

problem that is strongly related to the system approximation problem:

given a square matrix N 2 Rn�n , how well can it be approximated, in

the maximum singular value norm, by a matrix of rank r? We have the

following result:
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Lemma 4.13. Suppose that N 2 Rn�n , with singular values �1 � �2 �
� � � � �n. Then for any R 2 Rn�n , rank(R) � r,

��(N �R) � �r+1 :

Proof . We start by taking the singular value decomposition of N :

N = U�V � where � =

264�1 . . .

�n

375 ;
and matrices U; V are both unitary.

Now de�ne the column vectors vk by

[v1 � � � vn] = V ;

and consider the r+1-dimensional subspace described by spanfv1; : : : ; vr+1g.
Since the subspace ker(R) has dimension at least n � r, these two sub-

spaces must intersect non-trivially. Therefore spanfv1; : : : ; vr+1g contains
an element x, with jxj = 1, such that

Rx = 0 :

The vectors vk are orthonormal since V is unitary and so x can be expressed

by

x =

r+1X
k=1

�kvk with

r+1X
k=1

�2
k
= 1;

for appropriately chosen scalars �k.

We now let the matrix N �R act on this vector x to get

(N �R)x = Nx =

r+1X
k=1

�kNvk =

r+1X
k=1

�k�kuk

where we de�ne uk by [u1 � � �un] = U . The uk are orthonormal and so we

have

j(N �R)xj2 =
r+1X
k=1

�2
k
�2
k
:

To complete the proof notice that since the singular values are ordered we

have

r+1X
k=1

�2
k
�2
k
� �2

r+1

r+1X
k=1

�2
k
= �2

r+1;

and so

��(N �R) � j(N �R)xj � �r+1 :

�
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The preceding Lemma shows us that there are fundamental limits to the

matrix approximation problem in the ��(�) norm, and that singular values

play a key role in characterizing these limits. What does this have to do with

the system model reduction problem? The key connection is given by the

Hankel operator, since as we saw the dimension of a state-space realization

is the same as the rank of the Hankel operator. Not surprisingly, then, we

can express the fundamental limitations to model reduction in terms of the

Hankel singular values:

Theorem 4.14. Let �1 � �2 � � � � � �r � �r+1 � � � � �n > 0 be the

Hankel singular values associated with the realization (A;B;C) of Ĝ. Then

for any Ĝr of order r,

kĜ� Ĝrk1 � �r+1 :

This result says that if we are seeking a reduced order model of state

dimension r, then we cannot make the approximation error smaller than

the (r + 1)-th Hankel singular value of the original system.

Proof . To begin we have that

kĜ� Ĝrk1 � k�G�Grk = k�G � �Grk :
It therefore su�ces to demonstrate that

k�G � �Grk � �r+1 :

As we have noted before these Hankel operators satisfy

rank (�G) � n and rank (�Gr ) � r ;

which is a fact we will now exploit.

We recall the de�nitions of the observability and controllability operators

	o and 	c associated with (A;B;C), and the identity

�G = 	o	c :

Now we de�ne the maps Po : L2[0;1)! Rn and Pc : R
n ! L2(�1; 0] by

Po = Y
� 1

2

0 	�
o
and Pc = 	�

c
X
� 1

2
c ;

and verify that kPok = kPck = 1. We therefore have

k�G � �Grk = kPok � k�G � �Grk � kPck � ��(Po�GPc � P0�GrPc) ;

(4.6)

where the submultiplicative inequality is used. We further have that

Po�GPc = Y
1
2
o 	�

o
	o	c	

�
c
X

1
2
o = Y

1
2
o X

1
2
c ;

which has rank equal to n since its singular values are �1; : : : ; �n which are

all positive. But matrix Po�GrPc has rank at most equal to r since rank

(�Gr) � r. Invoke Lemma 4.13 to see that

��(Po�GPc � Po�GrPc) � �r+1 :
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Now apply (4.6) to arrive at the conclusion we seek.

�

4.6.2 Balanced truncation

We now move on to one of the major methods for �nding a reduced order

approximation. Recall we showed that a balanced realization for an input-

output system can always be found. Formally this means a realization such

that the gramians satisfy

Xc = Yo =

26664
�1

�2
. . .

�n

37775 :

Also we saw that if a given �k was small compared with the other eigen-

values, the corresponding state had the interpretation of being weakly

controllable and observable. The technique for model reduction we now

consider, essentially amounts to discarding or truncating such states.

Here we necessarily assume that the realization (A;B;C) is a balanced

realization and order the Hankel singular values

�1 � �2 � � � � � �n:

Let us suppose we want to �nd a realization of order r < n. We assume

that the strict inequality

�r+1 < �r is satis�ed;

i.e. we only attempt to truncate the system at an order where the Hankel

singular values have a clear separation. Then we compatibly partition our

realization as

A =

�
A11 A12

A21 A22

�
; B =

�
B1

B2

�
; and C = [C1 C2] ;

where A11 2 Rr�r . The reduced order model is chosen to be

Ĝr(s) = C1(Is�A11)
�1 B1 =

�
A11 B1

C1 0

�
:

The minimum requirement on Ĝr is that A11 be Hurwitz, and this is indeed

the case.

Proposition 4.15.

(a) The matrix A11, as de�ned above, is Hurwitz;

(b) The realization (A11; B1; C1) is balanced with Hankel singular values

�1; : : : ; �r.
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Proof . We begin by writing down the Lyapunov equations of the balanced

realization (A;B;C), highlighting the relevant partition:�
A�11 A�21
A�12 A�22

� �
�1 0

0 �2

�
+

�
�1 0

0 �2

��
A11 A12

A21 A22

�
+

�
C�1
C�2

�
[C1 C2] = 0;

(4.7)�
A11 A12

A21 A22

��
�1 0

0 �2

�
+

�
�1 0

0 �2

� �
A�11 A�21
A�12 A�22

�
+

�
B1

B2

�
[B�1 B

�
2 ] = 0:

(4.8)

Here �1 and �2 are diagonal matrices with, respectively �1; : : : ; �r, and

�r+1; : : : ; �n in the diagonal. Notice that, by assumption, they have no

eigenvalues in common.

From here we extract the top left blocks and obtain

A�11�1 +�1A11 + C�1C1 = 0; (4.9)

A11�1 +�1A
�
11 +B1B

�
1 = 0: (4.10)

We see then that if A11 is Hurwitz, we immediately have that �1 is a bal-

anced gramian for the truncated system, proving (b). Thus we concentrate

on part (a).

Let � be an eigenvalue of A11, and V be a full column rank matrix that

generates the eigenvector space, i.e.

ker(A11 � �I) = Im(V ):

Multiplying (4.9) on the left by V � and on the right by V leads to

(�� + �)V ��1V + V �C�1C1V = 0:

Since V ��1V > 0 we see that Re(�) � 0. Thus it only remains to rule out

the possibility of a purely imaginary eigenvalue; we make this assumption

from now on.

Setting � = j!, the preceding equation implies that the corresponding

V must satisfy

C1V = 0:

Now we multiply (4.9) only on the right by V ; we conclude that

A�11(�1V ) = �j!�1V:

We have now an invariant subspace of A�11, so we turn to an analogous

study of the dual equation (4.10). First we multiply it on the left by V ��1

and on the right by �1V to show

B�1�1V = 0;

then we return to (4.10) and perform only the right multiplication by �1V

to yield

A11(�
2
1V ) = j!�2

1V:
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So we are back with an eigenspace of A11; in particular, we have

Im(�2
1V ) � ker(A11 � j!I) = Im(V );

namely Im(V ) is invariant under �2
1. We can now �nish this exercise in

invariant subspaces by concluding that �2
1 must have an eigenvector v in

Im(V ), satisfying

�2
1v = �2v:

We have thus found v 6= 0 that is simultaneously an eigenvector of A11

with eigenvalue j!, and of �2
1, with eigenvalue �2. In addition, from the

previous development we have

C1v = 0 and B�1�1v = 0:

We claim that �
A11 A12

A21 A22

��
v

0

�
= j!

�
v

0

�
: (4.11)

Equivalently, we must show that A21v = 0. To do this we return to the

original Lyapunov equations (4.7) and (4.8) and multiply them respectively

by �
v

0

�
and

�
�1v

0

�
:

Looking only at the second row of equations and using the above properties

of v, we get

A�12�1v +�2A21v = 0;

A21�
2v +�2A

�
12�1v = 0;

which lead to the key relation

�2
2A21v = �2A21v:

At this point (only!) we bring in the assumption that �1 and �2 have no

common eigenvalues; thus �2 cannot be an eigenvalue of �2
2, so A21v must

be zero, which proves (4.11).

Now (4.11) contradicts the fact that A is Hurwitz, and thus the

assumption that � = j! is an eigenvalue of A11 is ruled out.

�

In the exercises you will show, by counterexample, that the requirement

of distinct eigenvalues for �1 and �2 (�r > �r+1) is indeed essential to

ensure the stability of the truncation.

Having discussed stability, we turn to the key model reduction question:

what is the H1 norm error achieved by this method? This type of question

may appear to be premature at this point in the course, since we have

not yet discussed any general purpose method for H1 norm computation.
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However the model reduction error can be quanti�ed by a \special purpose"

argument based on so-called \allpass dilations"; to develop it requires a

short diversion into the topic of inner transfer functions, after which we

will return to the balanced truncation error.

4.6.3 Inner transfer functions

We begin by recalling the notion of an isometric operator between Hilbert

spaces, characterized by the identity

U�U = I;

where U� is the usual adjoint. Such operators preserve norms and hence

have induced norm kUk = 1.

Focusing now on linear-time invariant operators characterized by a

transfer function Û(s) 2 RH1, we inquire which of these are isometric.

Converting to frequency domain we see that U is an isometry if and only

if

hÛ x̂; Û x̂i; holds for all x 2 L2
Therefore we conclude that a system de�nes an isometric operator if and

only if its transfer function satis�es

Û(j!)�Û(j!) = I; for all !:

Rational transfer functions satisfying the above identity are called inner

functions. The term allpass function is also used sometimes, since in the

scalar case these transfer functions have unit gain at every frequency.

The next step is to obtain a state-space test for inner functions. For this

purpose, notice that if

Û(s) =

�
A B

C D

�
then the realization

Û�(s) =
�
�A� �C�
B� D�

�
satis�es Û�(j!) = Û(j!)�. The rational function Û�(s) is called the para-

Hermitian conjugate of Û(s). If Û(s) 2 RH1, Û�(s) will be analytic on
the closed left half-plane.

Composing Û� and Û , we obtain the joint realization

Û�(s)Û(s) =

24 �A� �C�C �C�D
0 A B

B� D�C D�D

35 : (4.12)

Clearly, the only way the above rational function can be constant across

frequency, as required for Û to be inner, is that all states must be uncon-
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trollable or unobservable. An important case where this can be guaranteed

is given in the next lemma.

Lemma 4.16. Consider the transfer function Û(s) =

�
A B

C D

�
where A

is Hurwitz. If the observability gramian Yo of (A;C) satis�es the additional

property C�D + YoB = 0, then

Û�(s)Û(s) = D�D:

Proof . Starting with the realization (4.12), we introduce the similarity

transformation

T =

�
I �Yo
0 I

�
which leads to the equivalent realization

Û�(s)Û(s) =

24 �A� �(A�Yo + YoA+ C�C) �(C�D + YoB)

0 A B

B� D�C +B�Yo D�D

35 :
Now the Lyapunov equation for Yo, and the additional property in the

hypothesis give

Û�(s)Û(s) =

24 �A� 0 0

0 A B

B� 0 D�D

35 = D�D;

since all states in this latter realization are uncontrollable or unobservable.

�

We are now ready to return to the model reduction problem.

4.6.4 Bound for the balanced truncation error

In this section we develop a bound for the H1 norm error associated with

balanced truncation. This bound will show that if the �r+1; : : : ; �n are

small as compared with the remaining Hankel singular values, then Gr is

a near approximation to G.

We �rst consider the case where the n�r smallest Hankel singular values
are equal.

Lemma 4.17. Suppose the Hankel singular values of G satisfy

�1 � �2 � � � � � �r > �r+1 = �r+2 � � � = �n :

If Ĝr is obtained by r-th order balanced truncation, then kĜ � Ĝrk1 �
2�r+1.
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Proof . We assume that �r+1 6= 0 otherwise we are immediately done.

Start by de�ning the error system

Ê11(s) = Ĝ(s)� Ĝr(s) ;

which has state space realization

Ê11(s) =

2664
A11 0 0 B1

0 A11 A12 B1

0 A21 A22 B2

�C1 C1 C2 0

3775 :
Notice that by Proposition 4.15, this realization has a Hurwitz \A"-matrix.

Our technique of proof will be to construct an \allpass dilation" of E11(s),

by �nding

E(s) =

�
E11(s) E12(s)

E21(s) E22(s)

�
that contains E11 as a sub-block and is, up to a constant, inner. If this can

be done, the error norm can be bounded by the norm of E(s) which is easy

to compute.

We �rst use the similarity transformation

T =

24I I 0

I �I 0

0 0 I

35 ;

to get

Ê11(s) =

2664
A11 0 A12=2 B1

0 A11 �A12=2 0

A21 �A21 A22 B2

0 �2C1 C2 0

3775 :
Next, we de�ne the augmentation as

Ê(s) =

266664
A11 0 A12=2 B1 0

0 A11 �A12=2 0 �r+1�
�1
1 C�1

A21 �A21 A22 B2 �C�2
0 �2C1 C2 0 2�r+1I

�2�r+1B�1��11 0 �B�2 2�r+1I 0

377775
=:

�
�A �B
�C �D

�
:

Here we are using the notation

� =

�
�1 0

0 �r+1I

�
for the balanced gramian of the original system G.
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While this construction is as yet unmotivated, the underlying aim is to be

able to apply Lemma 4.16. Indeed, it can be veri�ed by direct substitution

that the observability gramian of the above realization is

�Yo =

244�2r+1��11 0 0

0 4�1 0

0 0 2�r+1I

35 ;

and that it satis�es the additional restriction

�C� �D + �Yo �B = 0:

While somewhat tedious, this veri�cation is based only the Lyapunov

equations satis�ed by the gramian �.

Therefore we can apply Lemma 4.16 to conclude that

E(j!)�E(j!) = �D� �D = 4�2
r+1I for all !;

and therefore we have

kÊ11k1 � kÊk1 = 2�r+1:

�

We now turn to the general case, where the truncated eigenvalues

�r+1; : : : ; �n are not necessarily all equal. Still, there may be repetitions

among them, so we introduce the notation �t1; : : : �
t

k
to denote the distinct

values of this tail. More precisely, we assume that

�t1 > �t2 > � � � > �t
k

and f�r+1; : : : ; �ng = f�t1; : : : �tkg. Equivalently, the balanced gramian of

the full order system is given by

� =

2666666664

�1
. . .

�r
�r+1

. . .

�n

3777777775
=

26664
�1

�t1I
. . .

�t
k
I

37775

where the block dimensions of the last expression correspond to the number

of repetitions of each �t
i
.

We are now ready to state the main result:

Theorem 4.18. With the above notation for the Hankel singular values of

Ĝ, let Ĝr be obtained by r-th order balanced truncation. Then the following

inequality is satis�ed:

kĜ� Ĝrk1 � 2(�t1 + � � ��t
k
):
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Proof . The idea is to successively apply the previous Lemma, truncat-

ing one block of repeated Hankel singular values at every step. By virtue

or Proposition 4.15, in this process the realizations we obtain remain bal-

anced and stable, and the Hankel singular values are successively removed.

Therefore at each step we can apply the previous Lemma and obtain an

error bound of twice the corresponding �t
i
. Finally, the triangle inequality

implies that the overall error bound is the sum of these terms.

More explicitly, consider the transfer functions Ĝ(0); : : : ; Ĝ(k), where

Ĝ(k) = Ĝ, and for each i 2 f1; : : : ; kg, Ĝ(i�1) is obtained by balanced

truncation of the repeated Hankel singular value �t
i
of Ĝ(i). By induction,

each Ĝ(i) has a stable, balanced realization with gramian26664
�1

�t1I
. . .

�t
i
I

37775 :
Therefore Lemma 4.17 applies at each step and gives

kĜ(i) � Ĝ(i�1)k1 � 2�t
i
:

Also Ĝ(0) = Ĝr, so we have

kĜ� Ĝrk = k
kX
i=0

�
Ĝ(i) � Ĝ(i�1)

�
k1

�
kX
i=0

kĜ(i) � Ĝ(i�1)k1 � 2(�t1 + � � ��t
k
):

�

As a comment, notice that by specializing the previous result to the

case r = 0 we can bound kĜk1 by twice the sum of its Hankel singular

values; since repeated singular values are only counted once, this is actually

a tighter version of Proposition 4.12.

We have therefore developed a method by which to predictably reduce

the dynamic size of a state space model, with the H1 norm as the quality

measure on the error.

Example:

We now give a numerical example of the uses of this method. Consider the

7-th order transfer function in RH1,

Ĝ(s) =
(s+ 10)(s� 5)(s2 + 2s+ 5)(s2 � 0:5s+ 5)

(s+ 4)(s2 + 4s+ 8)(s2 + 0:2s+ 100)(s2 + 5s+ 2000)
;

with magnitude Bode plot depicted in the top portion of Figure 4.4.
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Figure 4.4. Log-log plots for the example. Top: jĜ(j!)j. Bottom: jĜ(j!)j (dotted),
jĜ4(j!)j (full) and jĜ2(j!)j (dashed).

The Hankel singular values of Ĝ can be computed to be2666666664

�1
�2
�3
�4
�5
�6
�7

3777777775
=

2666666664

0:17926

0:17878

0:10768

0:10756

0:00076

0:00008

0:00003

3777777775
:

Given these values, it is apparent that a natural model reduction would be

to r = 4 states, since the remaining states are clearly very weakly observable

and controllable. We may also wish to study a more drastic reduction to

r = 2 states. The magnitude bode plots of Ĝ4 and Ĝ2, obtained by balanced

truncation, are shown, together with Ĝ, in the bottom portion of Figure

4.4. We see that Ĝ4 \picks-up" with great accuracy the high-frequency

behavior of the system (where it has its greatest gain), but commits errors

at low frequency. Ĝ2 focuses its approximation on the largest resonant peak,

around ! = 10.
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We can compute the model reduction bounds from Theorem 4.18, and

also (e.g. by frequency gridding, or with methods to be covered later in the

course) the actual H1 errors. We �nd

0:0014 = kĜ� Ĝ4k1 � 2(�5 + �6 + �7) = 0:0017;

0:2153 = kĜ� Ĝ2k1 � 2(�3 + �4 + �5 + �6 + �7) = 0:4322:

�

We conclude the section with two remarks:

First, we emphasize again that we are not claiming that the balanced

truncation method is optimal in any sense; the problem of minimizing kĜ�
Ĝrk1 remains computationally di�cult.

Second, given the presence of the Hankel operator and its singular values

in the above theory, we may inquire: does balanced truncation minimize the

Hankel norm k�
Ĝ
� �

Ĝr
k? Once again, the answer is negative. This other

problem, however, can indeed be solved by methods of a similar nature.

For details consult the references at the end of the chapter.

4.7 Generalized gramians and truncations

The goal of this �nal section is to generalize some of the above methods to

LMI tools, essentially by replacing Lyapunov equations with inequalities.

We will see that this extra exibility provides some valuable generalizations

and additional insight into the model reduction problem.

Let us generalize our notion of system gramians. A symmetric matrix X

is called a generalized controllability gramian if it satis�es the Lyapunov

inequality

AX +XA� +BB� � 0;

and similarly a symmetric matrix Y is a generalized observability gramian

if A�Y + Y A+ C�C � 0 holds.

The system gramians Xc and Yo are both generalized gramians, but are

not unique in this regard; in general there is a set of generalized gramians,

even when (A; B; C) is a minimal realization. What special property to

the actual gramians enjoy? From Proposition 4.4 we know, in fact, they

are the minimal elements among the generalized gramians, i.e.

X � Xc; Y � Yo (4.13)

for any generalized gramians X , Y .



4.7. Generalized gramians and truncations 161

As with Xc and Yo we say that two generalized gramians X and Y are

balanced when they are diagonal and equal:

X = Y =

2641 . . .

n

375 :
Generalized gramians can be balanced in the exact same way as before;

when (A;B;C) is minimal, X and Y are positive de�nite and we can simply

apply the simultaneous diagonalization result of Proposition 4.7.

The entries k are called the generalized Hankel singular values. It can

be shown, based on the inequalities (4.13), that with the order 1 � 2 �
� � � � n, we have as expected

i � �i; i = 1 : : : n:

Generalized gramians can also be used for model reduction by truncation;

we have the following generalization to Proposition 4.15 and Theorem 4.18:

Proposition 4.19. If Ĝ =

�
A B

C 0

�
is minimal, with A Hurwitz, and

Ĝr =

�
Ar Br

Cr 0

�
is formed by truncating according to the balanced

generalized gramians, then Ar is Hurwitz and

kĜ� Ĝrk1 � 2(t1 + � � � t
k
) ; (4.14)

where t
i
denote the distinct generalized Hankel singular values which satisfy

t
i
< r.

The proof of this result follows readily from our earlier balanced truncation

result, and is included in the exercises.

At �rst sight, the previous generalization may not appear to have a

particular application, because we have seen that the generalized Han-

kel singular values are always larger than the �i. Therefore it seems that

Theorem 4.18 would always give a smaller error bound.

Notice, however, that there is the issue of repetition in the singular val-

ues. Suppose, for example, that a third order system has Hankel singular

values (�1; �2; �3) = (1; 0:4; 0:3). If by some means we managed to ob-

tain generalized Hankel singular values (1; 2; 3) = (1; 0:4; 0:4), then in a

truncation to r = 1 states the generalized method will have a smaller error

bound.

Can such repetition always be arranged? The interesting fact is that

the answer is a�rmative, and can be used to characterize exactly the H1
model reduction problem. This is stated in the following result.

Theorem 4.20. Given Ĝ =

�
A B

C D

�
, with A 2 Rn�n Hurwitz, the

following are equivalent:
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(i) There exists Ĝr =

�
Ar Br

Cr Dr

�
of order r such that kĜ� Ĝrk1 < �.

(ii) There exist X > 0, Y > 0 satisfying

AX +XA� +BB� < 0;

A�Y + Y A+ C�C < 0;

�min(XY ) = �2; with multiplicity at least n� r:

We will not prove this theorem here, since it will follow as a corollary of a

general result on H1 control, to be proved in Chapter 7. We will also see

there how Ĝr can be constructed if we have the appropriate X , Y .

This theorem says that if there exists an H1 model reduction with error

less than �, then we can always �nd (strict) generalized gramians such

that the smallest generalized Hankel singular value is �, repeated n � r

times. In particular, there would be only one term in the error bound from

truncation (4.14), although truncation is not the method we will use to

obtain the above result. Notice also that the factor of 2 does not appear in

the H1 norm bound, which is related to the use of a term Dr 6= D (see

the exercises).

At this point, it might appear that we can solve the H1 model reduction

problem, since we have an exact �nite dimensional characterization of when

a reduction of order r with a certain error can be achieved. The di�culty

is that the above conditions, while easy to state, are not computationally

tractable. In particular the condition on the minimum eigenvalue is not

easy to enforce in a convex way. This means that the above theorem cannot

truly be considered a solution. Nevertheless, it is a valuable addition to our

insight on this problem, since it provides a very compact description of

where the computational di�culty lies.

There are other important reasons to work with generalized gramians,

perhaps the most compelling one is that these generalize to multidimen-

sional and uncertain systems, as discussed in the references. In addition, we

remark that for discrete time systems, generalized gramians appear natu-

rally since the actual gramians are not preserved by truncation; for more

details see the exercises and the references.

4.8 Exercises

1. Suppose A, X and C satisfy A�X +XA+ C�C = 0. Show that any

two of the following implies the third:

(i) A Hurwitz.

(ii) (C;A) observable.

(iii) X > 0.

2. Prove Proposition 4.4.
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3. Use the controllability canonical form to prove Proposition 4.6 in the

general case of uncontrollable (A;B).

4. Controllability gramian vs. controllability matrix. We have seen that

the singular values of the controllability gramian Xc can be used to

determine \how controllable" the states are. In this problem you will

show that the controllability matrix

Mc = [B AB A2B � � � An�1B]

cannot be used for the same purpose, since its singular values are

unrelated to those of Xc. In particular, construct examples (A 2
C 2�2 ; B 2 C 2�1 su�ces) such that:

a) Xc = I , but �(Mc) is arbitrarily small.

b) Mc = I , but �(Xc) is arbitrarily small.

5. Proof of Proposition 4.12.

a) For an integrable matrix function M(t), show that

��

 Z
b

a

M(t) dt

!
�
Z

b

a

��(M(t)) dt:

You can use the fact that the property holds in the scalar case.

b) Let Ĝ =

�
A B

C 0

�
. Using a) and the fact that Ĝ(j!) is the

Fourier transform of CeAtB, derive the inequality

kĜk1 �
Z 1

0

��(Ce
At

2 ) ��(e
At

2 B)dt:

c) If Xc, Yo are the gramians of (A;B;C), show thatZ 1

0

��(Ce
At

2 )2 dt � 2Tr(Yo);Z 1

0

��(e
At

2
B)2 dt � 2Tr(Xc):

d) Combine b) and c) for a balanced realization (A;B;C), to show

that

kĜk1 � 2(�1 + � � �+ �n) :

6. In Proposition 4.15 the strict separation �r > �r+1 of Hankel singular

values was used to ensure the stability of the truncation (i.e. that

A11 is Hurwitz). Show that indeed this is a necessary requirement, by

constructing an example (e.g. with n = 2, r = 1) where the truncated

matrix is not Hurwitz.

7. Consider the transfer function Ĝ(s) = 1
s+1

.
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a) Find the (only) Hankel singular value of Ĝ. Compare the error

bound and actual error when truncating to 0 states (clearly the

truncation is Ĝ0 = 0).

b) Show that by allowing a nonzero dr term, the previous error can

be reduced by a factor of 2. Do this by solving explicitly

min
d2R

kĜ� dk1:

8. a) Let X and Y be two positive de�nite matrices in C n�n . Show
that the following are equivalent:

(i) X � Y �1; (ii) �min(XY ) � 1; (iii)

�
X I

I Y

�
� 0:

b) Under the conditions of part a), show that: �min(XY ) = 1, with

multiplicity k, if and only if

�
X I

I Y

�
� 0 and has rank 2n� k.

c) Let (A;B;C) be a state-space realization of Ĝ(s) with A

Hurwitz. Assume there exist X0, Y0 in C
r�r such that

A

�
X0 0

0 �In�r

�
+

�
X0 0

0 �In�r

�
A� +BB� < 0

A�
�
Y0 0

0 �In�r

�
+

�
Y0 0

0 �In�r

�
A+ C�C < 0�
X0 �Ir
�Ir Y0

�
� 0

Using Theorem 4.20 prove that there exists a r-th order re-

alization Ĝr(s) with kĜ � Ĝrk1 < �. Is the above problem

convex?

9. Discrete time gramians and truncation. This problem concerns the

discrete time system

xk+1 = Axk +Bwk;

zk = Cxk:

(a) The discrete Lyapunov equations are

A�LoA� Lo + C�C = 0;

AJcA
� � Jc +BB� = 0:

Assume that each eigenvalue in the set eig(A) has absolute value

less than one (stable in the discrete sense). Explicitly express the

solutions Jc and Lo in terms of A, B and C; prove these solutions

are unique.

A realization in said to be balanced if Jc and Lo are diagonal

and equal. Is it always possible to �nd a balanced realization?
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(b) In this part we assume, in contrast to (a), that J > 0 and

L > 0 are generalized gramians that are solutions to the strict

Lyapunov inequalities

A�LA� L+ C�C < 0;

AJA� � J +BB� < 0:

Show that Lo < L and Jc < J . Can generalized gramians be

balanced?

(c) Suppose we are given generalized gramians J = L =

�
�1 0

0 �I

�
,

where �1 > 0 is diagonal. Partition the state space accordingly:

A =

�
A11 A12

A21 A22

�
; B =

�
B1

B2

�
;

C =
�
C1 C2

�
;

and de�ne

Ĝ11 =

�
A11 B1

C1 0

�
:

Show that (A11; B1; C1) is a balanced realization in the sense of

generalized gramians, and that all the eigenvalues of A11 have

absolute value less than one.

10. Prove Proposition 4.19. Use the following steps:

a) Use the balanced Lyapunov inequalities to show that there exits

an augmented system

Ĝa =

24 A B Ba

C

Ca

D 0

0 0

35
whose gramians are X and Y .

b) Apply Theorem 4.18 directly to Ĝa to give a reduced system

Ĝar. Show that Ĝr of Proposition 4.19 is embedded in Ĝar and

must therefore satisfy the proposition.

Notes and references

Balanced realizations were �rst introduced into the control theory litera-

ture in [84], motivated by principal component analysis. In this paper weak

and strong controllability and observability were introduced, and balanced

truncation model reduction was suggested. A proof that balanced trun-

cation yields a stable system was subsequently given in [97]. The initial

proof of the error bound in Theorem 4.18 appeared in [33], and an inde-

pendent but subsequent proof in [46]. The concise proof given here of the
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key Lemma 4.17 is due to [46]. For computational methods on obtaining

balanced realizations see [76] and [116].

The books [96] and [103] can be consulted for in depth treatments of

Hankel operators.

Another major approach to model reduction, also involving Hankel sin-

gular values is that of so-called optimal Hankel norm approximation. The

main results in this area were presented in [46], based on scalar results

appearing in [1]. A more compact treatment of this approach is given in

[47]. An interesting comment is that this approach, in conjunction with a

nonzero Dr term, can be used to improve the error bound in Theorem 4.18

by a factor of two.

The discrete time version of balanced truncation model reduction was

initiated in [2] using discrete gramians. The use of gramians in discrete

time only yields an analog of Lemma 4.17, but surprisingly Theorem 4.18

does not hold in general: the induction argument breaks down since bal-

ancing is not preserved by truncation. In [56] it was shown that if strict

generalized gramians are used in lieu of gramians then a discrete version of

Proposition 4.19 does hold.

The use of generalized gramians to characterize exactly the H1 model

reduction problem, is essentially from [67], although our version of Theo-

rem 4.20 emphasizes the LMI methods we will use later for H1 control

synthesis. A discrete time version, based on LMI methods, was obtained

in [7]. In this latter work, notions of balanced realizations and model re-

duction are extended to multi-dimensional and uncertain systems. We will

give an outline of these generalizations in Chapter 11.
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5

Stabilizing Controllers

We begin here our study of feedback design, which will occupy our atten-

tion in the following three chapters. We will consider systematic design

methods in the sense that objectives are �rst speci�ed, without restricting

to a particular technique for achieving them.

The only a priori structure will be a very general feedback arrangement

which is described below. Once introduced, we will focus in this chapter

on a �rst necessary speci�cation for any feedback system: that it be stable

in some appropriate sense. In particular we will precisely de�ne feedback

stability and then proceed to parametrize all controllers that stabilize the

feedback system.

G

K

wz

y

u

Figure 5.1. General feedback arrangement
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The general feedback setup we are concerned with is shown above. As

depicted the so-called closed-loop system has one external input and one

output, given by w and z respectively. The signal or function w captures

the e�ects of the environment on the feedback system; for instance noise,

disturbances and commands. The signal z contains all characteristics of the

feedback system that are to be controlled. The maps G and K represent

linear subsystems where G is a given system, frequently called the plant,

which is �xed, and K is the controller or control law whose aim is to ensure

that the mapping from w to z has the desired characteristics. To accomplish

this task the control law utilizes signal y, and chooses an action u which

directly a�ects the behavior of G.

Here G and K are state space systems, with G evolving according to

_x(t) = Ax(t) +
�
B1 B2

� �w(t)
u(t)

�
;�

z(t)

y(t)

�
=

�
C1

C2

�
x(t) +

�
D11 D12

D21 D22

��
w(t)

u(t)

�
;

and K being described by

_xK(t) = AKxK(t) +BKy(t);

u(t) = CKxK(t) +DKy(t):

Throughout this chapter we have the standing assumption that the matrix

triples (C;A;B) and (CK ; AK ; BK) are both stabilizable and detectable.

As shown in the �gure, G is naturally partitioned with respect to its two

inputs and two outputs. We therefore partition the transfer function of G

as

Ĝ(s) =

24 A B1 B2

C1 D11 D12

C2 D21 D22

35 =

�
Ĝ11(s) Ĝ12(s)

Ĝ21(s) Ĝ22(s)

�
;

so that we can later refer to these constituent transfer functions.

At �rst we must determine under what conditions this interconnection of

components makes sense. That is, we need to know when these equations

have a solution for an arbitrary input w. The system of Figure 5.1 is well-

posed if unique solutions exist for x(t), xK(t), y(t) and u(t), for all initial

conditions x(0), xK(0) and all (su�ciently regular) input functions w(t).

Proposition 5.1. The connection of G and K in Figure 5.1 is well-posed,

if and only if, I �D22DK is nonsingular.

Proof . Writing out the state equations of the overall system, we have

_x(t) = Ax(t) +B1w(t) +B2u(t) (5.1)

_xK(t) = AKxK(t) +BKy(t);
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and �
I �DK

�D22 I

��
u(t)

y(t)

�
=

�
0 CK
C2 0

� �
x(t)

xK(t)

�
+

�
0

D21

�
w(t): (5.2)

Now it is easily seen that the left hand side matrix is invertible if and only

if I � D22DK is nonsingular. If this holds, clearly one can substitute u,

y into (5.1) and �nd a unique solution to the state equations. Conversely

if this does not hold, from (5.2) we can �nd a linear combination of x(t),

xK(t), and w(t) which must be zero, which means that x(0), xK(0), w(0)

cannot be chosen arbitrarily. �

Notice in particular that if either D22 = 0 or DK = 0 (strictly proper

Ĝ22 or K̂), then the interconnection in Figure 5.1 is well-posed.

We are now ready to talk about stability.

5.1 System Stability

In this section we discuss the notion of internal stability, and discuss its

relation to the boundedness of input-output maps. Internal stability was al-

ready introduced in Chapter 2 for an autonomous system; we now specialize

the de�nition to our feedback arrangement.

De�nition 5.2. The system in Figure 5.1 is internally stable if it is well-

posed, and for every initial condition x(0) of G, and xK(0) of K, the limits

x(t); xk(t)
t!1�! 0 hold ;

when w = 0.

The following is an immediate test for internal stability.

Proposition 5.3. The system of Figure 5.1 is internally stable if and only

if I �D22DK is invertible and

�A =

�
A 0

0 AK

�
+

�
B2 0

0 BK

� �
I �DK

�D22 I

��1 �
0 CK
C2 0

�
(5.3)

is Hurwitz.

Proof . Given the well-posedness condition as in Proposition 5.1, it is easy

to solve from (5.1) and (5.2) to show that �A is the A-matrix of the closed-

loop; therefore the result follows from our work in Chapter 2. �

As de�ned, internal stability refers to the autonomous system dynamics

in the absence of an input w; in this regard it coincides with the stan-

dard notion of asymptotic stability of dynamical systems. However it has

immediate implications on the input-output properties of the system. In

particular, the transfer function from w to z, denoted T̂ (s), is proper and
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will have as poles a subset of the eigenvalues of �A; for example, when

DK = 0 we have

T̂ (s) =
�
C1 D12CK

�
(Is� �A)�1

�
B1

BKD21

�
+D11:

If �A is Hurwitz, this function has all its poles in the left half plane: in the

language of Chapter 3, it is an element of RH1. Equivalently, the closed
loop map w 7! z is a bounded, causal operator on L2[0;1); this is termed

input-output stability.

The question immediately arises as to whether the two notions are in-

terchangeable, that is whether the boundedness of w 7! z implies internal

stability. Clearly, the answer is negative: an extreme example would be to

have C1, D11, D12 be all zero which gives T̂ (s) = 0 but clearly says nothing

about �A. In other words, the internal dynamics need not be reected in the

external map: they could be unobservable or uncontrollable..

We are still interested, however, in seeking an external characterization

of internal stability; this will allow us, in a later section, to describe all

possible stabilizing controllers. Such characterization should only impose

non-restrictive requirements on the internal dynamics. From this point of

view, the variables w and z are not relevant to the discussion, since the

conditions of Proposition 5.3 depend exclusively on the components in u

and y of the state space system G.

These considerations lead us to discuss a second interconnection diagram,

represented in Figure 5.2. This is precisely the same as the bottom loop in

Figure 5.1, except that we have injected interconnection noise. In particular,

the controller K has the same description as before, and the system G22 is

the lower block of G, described by the state space equations

_x22(t) = Ax22(t) +B2v1(t)

v2(t) = C2x22(t) +D22v1(t);

where (C2; A; B2; D22) are the same matrices as in the state space

description of G.

The only addition to the diagram are the external inputs d1 and d2,

introduced at the interconnection between G22 and K.

As with our more general system, we say that this new system is well-

posed if there exist unique solutions for x22(t), xK(t), v1 and v2 for all

inputs d1(t) and d2(t) and initial conditions x22(0), xK(0). We say it is

internally stable if it is well posed and for di = 0 we have

x22(t); xK(t)
t!1�! 0 holds

for every initial condition.

It is an easy exercise to see that the system is well-posed, if and only

if, I �D22DK is nonsingular; this is the same well-posedness condition we

have for Figure 5.1. Also noticing that all the states in the description of G
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d1

d2

G22

K

v1v2

Figure 5.2. Input-output stability

are included in the equations for G22, it follows immediately that internal

stability of one is equivalent to internal stability of the other.

Lemma 5.4. Given a controller K, Figure 5.1 is internally stable, if and

only if, Figure 5.2 is internally stable.

The next result shows that with this new set of inputs, internal stability

can be characterized by the boundedness of an input-output map.

Lemma 5.5. Suppose that (C2; A; B2) is stabilizable and detectable. Then

Figure 5.2 is internally stable if and only if the transfer function of

�
d1
d2

�
7!�

v1
v2

�
is in RH1.

Proof . We begin by �nding an expression for the transfer function. For

convenience denote

�D =

�
I �DK

�D22 I

�
;

then routine calculations lead to the following relationship:�
v̂1(s)

v̂2(s)

�
= M̂(s)

�
d̂(s)

d̂2(s)

�
;

where

M̂(s) := �D�1
�
0 CK
C2 0

�
(Is� �A)�1

�
B2 0

0 BK

�
�D�1 + �D�1 +

�
0 0

0 �I

�
;

and �A is the closed loop matrix from (5.3). Therefore the \only if" direction

follows immediately, since the poles of this transfer function are a subset

of the eigenvalues of �A, which is by assumption Hurwitz; see Proposition

5.3 and Lemma 5.4.
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To prove \if": assume that the transfer function has no poles in �C+ ,

therefore the same is true of�
0 CK
C2 0

�
| {z } (Is� �A)�1

�
B2 0

0 BK

�
| {z }

�C �B

:

We need to show that �A is Hurwitz; it is therefore su�cient to show that

( �C; �A; �B) is a stabilizable and detectable realization. Let

�F =

�
F 0

0 FK

�
� �D�1

�
0 CK
C2 0

�
;

where F and FK are chosen so that A + B2F and AK + BKFK are both

Hurwitz. It is routine to show that

�A+ �B �F =

�
A+B2F 0

0 AK +BKFK

�
;

and thus ( �A; �B) is stabilizable.

A formally similar argument shows that ( �C; �A) is detectable. �

The previous characterization will be used later on to develop a

parametrization of all stabilizing controllers. As for the stabilizability

and detectability assumption on (C2; A;B2), we will soon see that it is

non-restrictive, i.e. it is necessary for the existence of any stabilizing

controller.

5.2 Stabilization

In the previous section we have discussed the analysis of stability of a

given feedback con�guration; we now turn to the question of design of

a stabilizing controller. The following result explains when this can be

achieved.

Proposition 5.6. A necessary and su�cient condition for the existence of

an internally stabilizing K for Figure 5.1, is that (C2; A;B2) is stabilizable

and detectable. In that case, one such controller is given by

K̂(s) =

�
A+B2F + LC2 + LD22F �L

F 0

�
;

where F and L are matrices such that A+B2F and A+LC2 are Hurwitz.

Proof . If the stabilizability or detectability of (C2; A;B2) is violated, we

can choose an initial condition which excites the unstable hidden mode. It

is not di�cult to show that the state will not converge to zero, regardless

of the controller. Details are left as an exercise. Consequently no internally

stabilizing K exists, which proves necessity.
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For the su�ciency side, it is enough to verify that the given controller

is indeed internally stabilizing. Notice that this is precisely the observer-

based controller encountered in Chapter 2. In particular, well-posedness is

ensured since DK = 0, and it was shown in Chapter 2 that the closed loop

eigenvalues are exactly the eigenvalues of A+B2F and A+ LC2. �

The previous result is already a solution to the stabilization problem,

since it provides a constructive procedure for �nding a stabilizer, in this

case with the structure of a state feedback combined with an asymptotic

observer. However there are other aspects to the stabilization question, in

particular:

� Can we �nd a stabilizer with lower order? The above construction

provides a controller of the order of the plant.

� What are all the stabilizing controllers? This is an important ques-

tion since one is normally interested in other performance properties

beyond internal stability.

We will address the �rst question using purely LMI techniques, starting

with the state feedback problem, and later considering the general case.

The second problem will then be addressed in Section 5.3.

5.2.1 Static state feedback stabilization via LMIs

We begin our search for stabilizing controllers in terms of LMIs by consid-

ering the simplest type of control, static state feedback. A state feedback

controller has direct access to the state of G, namely

y = x:

This means that C2 = I , D22 = 0. The feedback is static if it has no

dynamics, i.e. it is given simply by

u(t) = DKy(t):

As a beginning for controller parametrization we would like to �nd all such

DK that are stabilizing. That is, referring to Proposition 5.3, all matrices

DK such

AL := A+B2DK

is Hurwitz. We already know that such a DK exists exactly when (A; B2) is

stabilizable, and we now seek a constructive way to �nd such DK 's in terms

of an LMI. The natural path to follow is to impose that AL is Hurwitz by

means of a Lyapunov inequality of the type discussed in Chapter 4. Here

we will impose that the inequality

ALX +XA�
L
< 0
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has a solution X > 0 (dual to the test in Corollary 3, Chapter 4).

Substituting for AL we get

(A+B2DK)X +X(A+B2DK)
� < 0;

that can be expanded out as

AX +B2(DKX) +XA� + (XD�
K
)B�2 < 0:

The above is not an LMI inDK andX since their product appears. However

it is natural to introduce the new variable Y = DKX , which makes the

above an LMI in X and Y ; once this LMI is solved, the desired DK can be

easily reconstructed.

Thus we �nd that all stabilizing feedback laws can be found from a

convex feasibility problem. We summarize the conclusions in the following

statement.

Theorem 5.7. A static state feedback DK stabilizes Figure 5.1, if and only

if, there exist matrices X > 0 and Y such that

DK = Y X�1

and �
A B2

� �X
Y

�
+
�
X Y �

� �A�
B�2

�
< 0 is satis�ed:

We are now ready to move on to a more general LMI characterization of

�xed order controllers.

5.2.2 An LMI characterization of the stabilization problem

Given a �xed controller order, a direct approach to the stabilization prob-

lem is to write down a generic controller realization (AK ; BK ; CK ; DK),

and impose that the closed loop matrix �A in (5.3) is Hurwitz by means of

the Lyapunov inequality

XL > 0; �A�XL +XL
�A < 0:

The question is whether the above condition, with unknowns XL, AK , BK ,

CK and DK can be computed tractably. The following is a result in this

direction, stated for simplicity in the case of a strictly proper plant.

Theorem 5.8. Consider the system of Figure 5.1, with D22 = 0. There

exists a controller of order nK , which internally stabilizes the system, if
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and only if, there exist n� n matrices X > 0, Y > 0, such that

N�
X
(A�X +XA)NX < 0; (5.4)

N�
Y
(AY + Y A�)NY < 0; (5.5)�

X I

I Y

�
� 0; and (5.6)

rank

�
X I

I Y

�
� n+ nK ; (5.7)

where NX and NY are full column rank matrices such that

ImNX = kerC2;

ImNY = kerB�2 :

We make the following remarks: the LMIs (5.4) and (5.5) are equiva-

lent, respectively, to the detectability and stabilizability of the realization

(C2; A;B2). Since they are homogeneous in the unknowns, the solutions

can always be scaled up to satisfy (5.6). This means that if there is no

constraint in the order nk, the existence of a stabilizer is equivalent to sta-

bilizability and detectability of (C2; A;B2), consistently with the previous

analysis.

Furthermore, clearly the rank constraint (5.7) is not felt when nK � n,

which implies that we never need an order greater than n to stabilize,

once again consistently with Proposition 5.6. In this case, the set of LMIs

(5.4-5.6) is a convex problem that can be solved for X , Y . For nK <

n, stabilizability and detectability may not su�ce to obtain a stabilizer;

furthermore, the rank constraint is not convex and makes the computation

of X , Y more di�cult; still, the above proposition provides useful insight

into the role of controller order.

Once X , Y are obtained, algebraic operations can be used to compute

XL, and from it an additional LMI leads to the controller. We will not

extend ourselves on this construction here, or on the proof of Theorem 5.8,

since these topics will all be covered in Chapter 7, where we extend the LMI

method for the solution of the H1 control problem. After going through

Chapter 7, the reader is invited to prove Theorem 5.8 as an exercise.

5.3 Parametrization of stabilizing controllers

In this section we pursue the objective of fully characterizing the family of

all linear controllers which stabilize a given plant.

This is a very important tool since in many problems one wishes

to optimize a performance objective with stability as a constraint. A

parametrization of the stabilizing controllers reduces these problems to

unconstrained optimization over the parameter.
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The parametrization will be strongly based on transfer function meth-

ods, for which we will exploit the input-output characterization of internal

stability, summarized in the following corollary of Lemmas 5.4 and 5.5 and

Proposition 5.6.

Corollary 5.9. A necessary and su�cient condition for the existence of an

internally stabilizing controller for Figure 5.1, is that (C2; A;B2) is stabi-

lizable and detectable. In that case, the internally stabilizing controllers are

exactly those for which the con�guration of Figure 5.2 makes the transfer

function of �
d1
d2

�
7!
�
v1
v2

�
an element of RH1.

It is important to note that given any two appropriately dimensioned func-

tions Q̂1 and Q̂2 in RH1, their product Q̂1Q̂2 will be in RH1, as will be
their sum Q̂1 + Q̂2; namely RH1 has the structure of an algebra. The fol-

lowing subsection introduces tools to analyze the structure of this algebra,

which are key to the controller parametrization.

5.3.1 Coprime factorization

Throughout this section we work mostly with transfer functions. So far we

have used the \hat" convention to denote a transfer function, for instance

T̂ (s). We will now also use the \wave" notation to denote functions, as in
~Q(s).

Given two matrix valued functions M̂ and N̂ in RH1, they are right

coprime if there exist ~X; ~Y 2 RH1 such that

~XM̂ + ~Y N̂ = I :

Similarly, ~M and ~N are left coprime if there exist X̂ and Ŷ in RH1, such
that

~MX̂ + ~NŶ = I :

These equations are called Bezout identities.

A right coprime factorization of a proper rational function P̂ is a

factorization

P̂ = N̂M̂�1 ;

where

N̂ ; M̂ 2 RH1; M̂�1 is proper,

and N̂ and M̂ are right coprime. A left coprime factorization for P̂ would

be

P̂ = ~M�1 ~N ;
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with similar restrictions imposed on ~N and ~M as in a right factorization.

Example:

To gain insight into the de�nitions, consider the case of a scalar p̂(s). In

this case a (right or left) coprime factorization is

p̂(s) =
n̂(s)

m̂(s)

where n̂(s), m̂(s) are in RH1, and

x̂(s)m̂(s) + ŷ(s)n̂(s) = 1 for some x̂(s); ŷ(s) 2 RH1:
It is not di�cult to show that coprimeness over RH1 is equivalent to

the property that n̂(s) and m̂(s) have no common zeros on the closed right

half plane C+ , or at s =1.

Take, for instance, p̂(s) = s�1
s�2 ; then

n̂(s) =
s� 1

s+ a
; m̂(s) =

s� 2

s+ a

de�nes a coprime factorization over RH1 for any a > 0, but

n̂(s) =
s� 1

(s+ a)2
; m̂(s) =

s� 2

(s+ a)2

does not. �

Do these factorizations exist in the general matrix case? The following

result shows constructively that this is the case for any proper rational

matrix.

Proposition 5.10. Given a proper rational function P̂ (s), there exist both

right and left coprime factorizations

P̂ = N̂M̂�1 = ~M�1 ~N ;

satisfying �
~X � ~Y

� ~N ~M

��
M̂ Ŷ

N̂ X̂

�
= I (5.8)

for appropriate functions ~X, ~Y , X̂ and Ŷ in RH1.

Notice that the Bezout identities in (5.8) have a sign change as compared

to the ones above, which is of course inconsequential. Also, here ~X, ~Y X̂

and Ŷ satisfy an additional identity, and (5.8) is therefore termed a doubly

coprime factorization of P̂ .

Proof . Our proof is by direct construction. Let

P̂ (s) =

�
A B

C D

�
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where (C;A;B) is a stabilizable and detectable realization. Introduce the

state space system.

_x(t) = Ax(t) +Bu(t) x(0) = 0

y(t) = Cx(t) +Du(t) :

Now choose a matrix F such that AF := A+BF is Hurwitz. Further de�ne

v(t) = u(t)� Fx(t)

CF = C +DF :

Then we de�ne the system

_x(t) = AFx(t) +Bv(t) x(0) = 0

u(t) = Fx(t) + v(t)

y(t) = CFx(t) +Dv(t) ;

whose solutions have a one-to-one correspondence with the solutions to the

�rst system. The transfer function from v to u is

M̂(s) =

�
AF B

F I

�
;

and from v to y has transfer function

N̂(s) =

�
AF B

CF D

�
:

Thus we see that

P̂ (s) = N̂(s)M̂�1(s) ;

a fact that can also be checked via direct state space manipulations.

Similarly a factorization

P̂ (s) = ~M�1(s) ~N(s) ;

can be found, with

~M(s) =

�
AH H

C I

�
; ~N(s) =

�
AH BH

C D

�
;

where H is chosen such that AH = A+HC is Hurwitz, and BH = B+HD.

A quick way to derive these is to transpose the problem to

P̂ T (s) =

�
AT CT

BT DT

�
= ~NT (s)( ~MT (s))�1

and reproduce the steps of the right coprime case.

The other four transfer functions are given by

X̂(s) =

�
AF �H
CF I

�
Ŷ (s) =

�
AF �H
F 0

�
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and

~X(s) =

�
AH �BH

F I

�
~Y (s) =

�
AH �H
F 0

�
:

That these satisfy the claim can be veri�ed by routine state space

manipulations.

�

5.3.2 Controller Parametrization

We are now ready to parametrize all stabilizing controllers for Figure 5.1.

From Corollary 5.9, we may focus on the input-output properties of the

arrangement of Figure 5.2. To motivate what follows, we start by looking

again at the case of scalar functions.

Example:

Let Ĝ22 be a scalar transfer function with coprime factorization Ĝ22 =
n̂(s)

m̂(s)
.

Let x̂(s); ŷ(s) 2 RH1 satisfy

x̂(s)m̂(s)� ŷ(s)n̂(s) = 1: (5.9)

Now we claim that K̂(s) =
ŷ(s)

x̂(s)
is input-output stabilizing for Figure 5.2.

To see this, it is routine to check that the transfer function of

�
d1
d2

�
7!
�
v1
v2

�
is given by

1

1� K̂Ĝ22

�
1 K̂

Ĝ22 K̂Ĝ22

�
=

1

x̂m̂� ŷn̂

�
x̂m̂ ŷm̂

x̂n̂ ŷn̂

�
=

�
x̂m̂ ŷm̂

x̂n̂ ŷn̂

�
:

Notice that the relationship (5.9) played a key role in making the common

denominator disappear. The last transfer function is in RH1, which proves
stability.

In the same vein, noticing that

(x̂ � n̂q̂)m̂� (ŷ � m̂q̂)n̂ = 1

for any q̂ in RH1, it follows analogously that

K̂(s) =
ŷ(s)� m̂(s)q̂(s)

x̂(s)� n̂(s)q̂(s)

is a stabilizing controller for any q̂ in RH1 that makes the above transfer

function proper. Thus we see that a coprime factorization generates a family

of stabilizing controllers over the parameter q̂(s).

The striking fact, which is proved below for the general matrix case, is

that indeed all stabilizing controllers can be expressed in the latter form.

�
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d1

d2

q

p

v1v2
M�1N

V �1 U

Figure 5.3. Coprime factorization

We now proceed to extend the idea in the example to the matrix setting,

and also build up the theory necessary to show the ensuing parametrization

is complete. Let �
~X � ~Y

� ~N ~M

� �
M̂ Ŷ

N̂ X̂

�
= I

be a doubly coprime factorization of Ĝ22, and

K̂ = Û V̂ �1 = ~V �1 ~U

be coprime factorizations for K̂.

The following gives us a new condition for stability.

Lemma 5.11. Given the above de�nitions the following are equivalent

(a) The controller K input-output stabilizes G22 in Figure 5.2;

(b)

�
M̂ Û

N̂ V̂

�
is invertible in RH1;

(c)

�
~V � ~U

� ~N ~M

�
is invertible in RH1.

Proof . First we demonstrate that condition (b) implies condition (a). This

proof centers around Figure 5.3, that is exactly Figure 5.2 redrawn with

the factorizations for G22 and K. Clearly�
M̂ �Û
�N̂ V̂

� �
q̂

p̂

�
=

�
d̂1

d̂2

�
: (5.10)

Thus we see�
v̂1
v̂2

�
=

(�
I 0

0 0

�
+

�
0 Û

N̂ 0

��
M̂ �Û
�N̂ V̂

��1)�
d̂1
d̂2

�
:
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The above transfer function inverse is in RH1 by assumption (b), therefore

we see that (a) holds.

Next we must show that (a) implies (b). To do this we use the Bezout

identity.

~XM̂ � ~Y N̂ = I :

Referring to the �gure we obtain

M̂ q̂ = v̂1
N̂ q̂ = v̂2 :

Multiplying the Bezout identity by q̂ and substituting we get

q̂ = ~Xv̂1 � ~Y v̂2 :

Now by assumption the transfer functions from d̂1 and d̂2 to v̂1 and v̂2 are

in RH1. Thus by the last equation the transfer function from the inputs

d̂1 and d̂2 to q̂ must be in RH1.

Similarly we can show that the transfer functions from the inputs to p̂

are in RH1, by instead starting with a Bezout identity ~XK V̂ + ~YK Û = I

for the controller. Recalling the relationship in (5.10) we see that (b) must

be satis�ed.

To show that (a) and (c) are equivalent we simply use the left coprime

factorizations for Ĝ22 and K̂, and follow the argument above.

�

We can now prove the main synthesis result of the chapter.

Theorem 5.12. A controller K input-output stabilizes G22 in Figure 5.2,

if and only if, there exists Q̂ 2 RH1 such that

K̂ = (Ŷ � M̂Q̂)(X̂ � N̂Q̂)�1 = ( ~X � Q̂ ~N)�1( ~Y � Q̂ ~M) (5.11)

and the latter two inverses exist as proper rational functions.

Proof . We begin by showing that the latter equality holds for any Q̂ 2
RH1 such that the inverses exist. Given such a Q̂ we have by the doubly

coprime factorization formula that�
I Q̂

0 I

��
~X � ~Y

� ~N ~M

��
M̂ Ŷ

N̂ X̂

� �
I �Q̂
0 I

�
= I ;

which yields �
~X � Q̂ ~N �( ~Y � Q̂ ~M)

� ~N ~M

� �
M̂ Ŷ � M̂Q̂

N̂ X̂ � N̂Q̂

�
= I (5.12)
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Taking this product we get �nally�
? ( ~X � ~Q ~N)(Ŷ � M̂Q̂)� ( ~Y � Q̂ ~M)(X̂ � N̂Q̂)

? ?

�
= I :

Here \?" denotes irrelevant entries, and from the top right entry we see

that the two quotients of the theorem must be equal if the appropriate

inverses exist.

We now turn to showing that this parametrization is indeed stabilizing. So

choose a

Q̂ 2 RH1, where the above inverses exist, and de�ne

Û = Ŷ � M̂Q̂ V̂ = X̂ � N̂Q̂
~U = ~Y � Q̂ ~M ~V = ~X � Q̂ ~N :

From (5.12) we see �
~V � ~U

� ~N ~M

��
M̂ Û

N̂ V̂

�
= I ;

which implies that Û ; V̂ and ~U; ~V are right and left coprime factorizations

of K̂ respectively. Also it clearly says�
M̂ Û

N̂ V̂

��1
2 RH1 :

Therefore invoking Lemma 5.11 we see that K̂ is stabilizing.

Finally, we show that every stabilizing controller is given by the parametriza-

tion in (5.11). Fix a controller K̂ and let

K̂ =: Û V̂ �1

be a right coprime factorization. De�ne

�̂ := ~MV̂ � ~NÛ ;

and observe �
~X � ~Y

� ~N ~M

� �
M̂ Û

N̂ V̂

�
=

�
I ~XÛ � ~Y V̂

0 �̂

�
from the doubly coprime factorization of Ĝ22. Now both the matrix func-

tions on the left hand side have inverses in RH1: the �rst by the doubly

coprime factorization; the second by Lemma 5.11. Immediately we see that

�̂�1 2 RH1 :

Set Q̂ := �( ~XÛ � ~Y V̂ )�̂�1, which is in RH1, and left-multiply the above

matrix equation by �
M̂ Ŷ

N̂ X̂

�
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to get �
M̂ Û

N̂ V̂

�
=

�
M̂ Ŷ

N̂ X̂

� �
I �Q̂�̂
0 �̂

�
=

�
M̂ (Ŷ � M̂Q̂)�̂

N̂ (X̂ � N̂Q̂)�̂

�
:

Just looking at the second block-column we see that

(X̂ � N̂Q̂)�1 = �̂V̂ �1

exists and is proper, and also that

K̂ = (Ŷ � M̂Q̂)(X̂ � N̂Q̂)�1:

�

In the above statement, we have described all stabilizing controllers for

Figure 5.2 in terms of parameter Q̂(s). The only constraints on this Q̂ are

that it is RH1, and that the inverse

(X̂ � N̂Q̂)�1

exists and is proper. This latter condition can be expressed as the require-

ment that X̂(1)�N̂(1)Q̂(1) should be invertible, and ensures our family

of controllers remains proper.

5.3.3 Closed-loop maps for the general system

In this section we summarize and assemble the results we have developed,

by returning to stabilization of the general setup of Figure 5.1. First recall

our partition of the system G:

Ĝ =

24 A B1 B2

C1 D11 D12

C2 D21 D22

35 =

�
Ĝ11 Ĝ12

Ĝ21 Ĝ22

�
:

Next take a doubly coprime factorization of Ĝ22�
~X � ~Y

� ~N ~M

� �
M̂ Ŷ

N̂ X̂

�
= I ;

where Ĝ22 = N̂M̂�1 = ~M�1 ~N . With these de�nitions we have the

following general result.

Theorem 5.13. Suppose (C2; A;B2) is a detectable and stabilizable real-

ization. Then all controllers that internally stabilize the system of Figure

5.1 are given by

K̂ = (Ŷ � M̂Q̂)(X̂ � N̂Q̂)�1 = ( ~X � Q̂ ~N)�1( ~Y � Q̂ ~M) ;

where Q̂(s) 2 RH1 and X̂(1)� N̂(1)Q̂(1) is invertible.

Proof . This follows immediately from Corollary 5.9 and Theorem 5.12.

�
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Having parametrized all stabilizing controllers in terms of the RH1 pa-

rameter Q̂, we now turn to how this parametrizes the closed-loop map from

w to z.

De�ne the three transfer functions

T̂1 = Ĝ11 + Ĝ12Ŷ ~MĜ21;

T̂2 = Ĝ12M̂;

T̂3 = ~MĜ21 :

With these de�nitions in hand we have

Theorem 5.14.

(a) T̂k 2 RH1, for 1 � k � 3;

(b) With K as in Theorem 5.13, the transfer function from w to z in

Figure 5.1 is given by

T̂1 � T̂2Q̂T̂3 :

Proof . This follows by routine algebra, and is left as an exercise.

�

The expression in (b) above shows that the closed-loop transfer function

from w to z is an a�ne function of the control parameter Q̂. This is a

property that can be exploited in many problems, and in particular is very

important for optimization.

In this chapter we have de�ned stability for the general feedback con�g-

uration of Figure 5.1. We found conditions under which stabilization was

possible, and gave a complete characterization of all stabilizing controllers.

The next topic of the course is optimal controller synthesis, where our

performance demands are more than just stability.

5.4 Exercises

1. Consider the region R =

�
s 2 C :

�
s+ s� �(s � s�)

�(s� � s) s+ s�

�
< 0

�
in

the complex plane. Here s� denotes conjugation, and � > 0.

a) Sketch the region R.
b) For A, X in C n�n we consider the 2n� 2n LMI�

AX +XA� �(AX �XA�)
�(XA� �AX) AX +XA�

�
< 0

that is obtained by formally replacing s by AX , s� by XA� in
the de�nition of R. Show that if there exists X > 0 satisfying

this LMI, then the eigenvalues of A are in the region R. It can
be shown that the converse is also true.
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c) Now we have a system _x = Ax + Bu, and we wish to design a

state feedback u = Fx such that the closed loop poles fall in R.
Derive an LMI problem to do this.

2. Complete the proof of Proposition 5.10 by showing that the given

transfer functions satisfy equation (5.8). To do this, �rst write

realizations of order n for each of�
~X � ~Y

� ~N ~M

�
and

�
M̂ Ŷ

N̂ X̂

�
;

then compose them and eliminate unobservable/uncontrollable states.

Yes, it's a little tedious, but signi�cantly less than working with

matrices of rational functions.

3. In this problem we consider the system in the �gure, where P is a

stable plant, i.e. P̂ (s) 2 RH1.

- - -
6

?-

d

PK
z

�

r

a) Show that all stabilizing controllers are given by K̂ = Q̂(I �
P̂ Q̂)�1, with Q̂(s) 2 RH1 and such that the inverse is proper.

b) Now consider the case of single input-output P and K.

Parametrize all controllers that stabilize the plant and give per-

fect asymptotic tracking of a step applied in r, for d = 0. Is this

always possible?

c) Repeat part b) for asymptotically rejecting a step applied in d.

4. Prove Theorem 5.16.

5. In the standard feedback picture of the �gure we assume that H , �

are both in RH1.

d1

d2

�

H

v1v2

a) Show that the system is input-output stable (i.e. the map from

d to v is in RH1) if and only if I ��H is invertible in RH1.
b) If k�k1kHk1 < 1, show the system is input-output stable.
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6. Let P̂ (s) be a proper rational matrix. A right coprime factorization

P̂ = N̂M̂�1 is called normalized if

�
N̂(s)

M̂(s)

�
is inner (see Chapter 4).

It is shown in the exercises of the next chapter that every P̂ admits

a normalized right coprime factorization (n.r.c.f.).

a) Given a n.r.c.f. P̂ = N̂M̂�1, we now consider the perturbed

plant

P̂� = (N̂ + �̂N )(M̂ + �̂M )�1;

where �̂N , �̂M are in RH1 and

 �̂N

�̂M


1
� �:

Show that P̂� corresponds to the system inside the dashed box

in the following Figure.

N M�1

��M�N

P�

q

K

d1 d2

p2p1

Further show that given a controller K̂, the above con�guration

can be redrawn into the equivalent �gure below, where

Ĥ = M̂�1(I � K̂P̂ )�1
�
K̂ I

�
; p =

�
p1
p2

�
; d =

�
d1
d2

�
:

H

�N

��M

qp
d

b) Using Problem 5, show that if K stabilizes P and

� <

�P̂I
�
(I � K̂P̂ )�1

�
K̂ I

��1
1
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then the controller will stabilize the perturbed plant.

c) Based on these results, propose a method of model reduction

for unstable plants. The method should be well behaved from

the point of view of the stabilization question (explain why).

Describe the algorithm in terms of concrete steps which can be

calculated in state space.

Notes and references

The standard closed loop formulation used here originates in [28], and owes

much to the detailed presentation in [41]. These sources concentrate on

pure input-output stability of a form equivalent to the internal stability

considered here.

The solution to the general stabilization problem in terms of LMIs orig-

inates in [77], where multi-dimensional systems were treated; the present

form with a constraint on controller order, is a special case of the optimal

synthesis results in [42, 89], to be covered later in the book.

The transfer function parametrization of all stabilizing controllers was

introduced in [148] and [73] in terms of matrix polynomial fractions. The

parametrization given here in terms of RH1 is from [20]. This parametriza-

tion is not crucial in future chapters of this course. However it has played

an important part in the development of robust control theory, and contin-

ues to be the launching point for many synthesis approaches; for instance

in L1 optimal control [17].

Coprime factorizations over RH1 were introduced in [134], to obtain

a factorization theory suited to the study of stability. A more extensive

presentation of this approach is given in [136]. To deal with the issue of

computation, state space realizations for coprime factorizations were de-

veloped in [72], and the state space doubly coprime factorization formulae

used here are from [86]. Coprime factorizations of this sort have numerous

applications, and are used in many branches of robust control theory; see

for example [44] and [48].
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6

H2 Optimal Control

In this chapter we begin our study of optimal synthesis and in particular

will derive controllers that optimize the H2 performance criterion.

The performance criterion of the chapter is de�ned by the space RH2

of matrix valued transfer functions. This space consists of rational, strictly

proper transfer functions, which have all their poles in C� . Thus it is the
natural extension to matrix functions of the space RH2 of vector valued

functions introduced in Chapter 3.

The inner product on this space is de�ned as

hF̂ ; Ĝi2 =
1

2�

Z 1

�1
TrfF̂ �(j!)Ĝ(j!)gd!

for two elements F̂ and Ĝ in RH2.

The synthesis problem we wish to address is concerned with the familiar

feedback arrangement shown in Figure 6.1, where both G and K are state

space systems. It is convenient to introduce the following notation for the

transfer function from w to z in the diagram.

S(Ĝ; K̂) := Ĝ11 + Ĝ12K̂(I � Ĝ22K̂)�1Ĝ21 = transfer function w 7! z :

This is sometimes called the star-product between transfer functions Ĝ and

K̂, or equivalently their linear fractional transformation. S(Ĝ; K̂) is well-

de�ned and proper provided the interconnection is well-posed, which will

be a basic requirement.

The optimal H2 synthesis problem is

Given: nominal state space system G;
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G

K

wz

y

u

Figure 6.1. Synthesis arrangement

Find: a state space controller K, which internally stabilizes G and

minimizes kS(Ĝ; K̂)k2 :

The major goal of the chapter is to construct, or synthesize, the solution

K to this optimization problem. A motivation for this optimization will be

given in the next section.

Let us �rst consider the pure analysis question of computing the H2

norm of an element P̂ of RH2. Take a state space realization

P̂ =

�
A B

C 0

�
;

where A is Hurwitz. Then we have

kP̂k22 =
1

2�

Z 1

�1
TrfP̂ �(j!)P̂ (j!)gd!

=

Z 1

0

TrfB�eA�tC�CeAtBgdt ;

where the last equality follows by the Plancherel Theorem. Using linearity

of the trace gives us

kP̂k22 = TrfB�
Z 1

0

eA
�
tC�CeAtdtBg = TrB�YoB

with Yo denoting the observability gramian. A similar argument shows that

kP̂k22 = TrCXcC
� where Xc is the controllability gramian of this realiza-

tion. At the end of the chapter we will see that LMIs can also be used for

this calculation.
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6.1 Motivation for H2 control

In this section we briey discuss the motivation, from a control system

perspective, for the design of a feedback control from the point of view of

optimal H2 performance.

First, a general comment on the desire to minimize a norm of the map

from w to z; this comment also applies to H1 control, to be considered in

the next chapter. Clearly, for this kind of objective to be meaningful the

arrangement of Figure 6.1 must be such that z represents variables that

must be \kept small". For example, in a tracking problem the con�guration

should be set up so that z contains the tracking error, rather than the

tracking output. Also z usually contains some penalty on the control e�ort

u, to make the problem meaningful. Although we will not discuss these

modeling issues here, this philosophy underlies the objective of \making

maps small" which we are adopting.

Generally speaking, the H2 norm is an appropriate measure of perfor-

mance whenever there is information about the spectral content of the

driving variable w. The most common example of this is when w is station-

ary noise, which we can model for instance as a stationary random process.

Frequently when given this interpretation H2 optimal control is referred to

as linear quadratic gaussian (LQG) control. This motivation is now briey

described.

For a stationary stochastic process, the autocorrelation matrix is de�ned

as

Rw(�) = Ew(t + �)w(t)�

where E denotes expected value, and the spectral density Sw(j!) is the

Fourier transform of Rw(�). While the speci�c signal trajectory w(t) is a

priori unknown, it is common that one has a good model of the spectral

density. The signal variance or power is related to it by

Ejw(t)j2 = TrRw(0) =
1

2�

Z 1

�1
TrSw(j!)d!

If z and w are related by z = Pw for a stable, linear time invariant system

P , it can be shown that

Sz(j!) = P̂ (j!)Sw(j!)P̂ (j!)
�

and therefore

Ejz(t)j2 = 1

2�

Z 1

�1
TrP̂ (j!)Sw(j!)P̂ (j!)

�d!

=
1

2�

Z 1

�1
TrP̂ (j!)�P̂ (j!)Sw(j!)d!

The right hand side of the previous equation looks exactly like kPk22, except
for the weighting matrix Sw(j!). In fact the identity is exact for the case of
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white noise1 Sw(j!) = I and therefore the H2 norm can be interpreted as

the output variance for white noise applied at the input. More generally, by

writing Sw(j!) = Ŵ �(j!)Ŵ (j!) and incorporating the \weight" W (j!)

into the setup of Figure 6.1, the H2 norm can be used to study the response

to processes of known spectral density.

A second example where we have information about the input spectrum

is when the input signal w(t) is known a priori. This arises, for example in

the case of tracking of �xed reference signals. Let us consider the special

case where w(t) is scalar valued, and in particular

w(t) = �(t) ;

the Dirac delta function. Then directly from the de�nition we have that

kzk22 =
Z 1

�1
z�(t)z(t)dt

=
1

2�

Z 1

�1
ẑ�(j!)ẑ(j!)d!

=
1

2�

Z 1

�1
P̂ �(j!)P̂ (j!)d!

= kP̂k22 :

Thus we see that when the system input is scalar valued, the H2 norm

of P̂ gives us a direct measure of the system output energy. If instead of

the Dirac delta function we wished to study the response to a di�erent

(transient) input, this signal can be generated as the impulse response of

a known �lter Ŵ (s), which once again can be incorporated into our H2

optimization setup.

To extend this interpretation to vector-valued inputs: suppose that the

input to P has m spatial channels; that is w(t) takes values in Rm . Then

de�ne

wk(t) = �(t) � ek;

where ek is the kth standard basis vector in Rm . If zk is the response

zk = Pwk, then it follows that

mX
k=1

kzkk22 = kP̂k22

Details are left as an exercise. Thus kP̂k22 gives us the sum of the output

energies, which can also be thought of as a measure of the average output

energy over the impulsive inputs.

1Strictly speaking, this idealization escapes the theory of stationary random

processes; a rigorous treatment is not in the scope of our course.
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Finally, we present a third motivation for the H2 norm which is of a

di�erent nature; here the input is an arbitrary L2 signal and has no known

characteristics, but we wish to measure the output signal in the L1 norm

(over time). That is, our criterion is the induced norm from L2 to L1,

kPkL2!L1
= sup
kwk2=1

kzk1

This interpretation applies to the case of a scalar output z(t). We can write

jz(t)j =
���� 12�

Z 1

�1
ẑ(j!)ej!td!

����
� 1

2�

Z 1

�1
jP̂ (j!)ŵ(j!)jd!

� 1

2�

Z 1

�1
jP̂ (j!)jjŵ(j!)jd!

� kP̂k2kŵk2
Hence kPkL2!L1

� kP̂k2, and equality is not di�cult to show.

Here we have discussed three di�erent views of the H2 norm of a system

transfer function. There is also a fourth which we leave until Chapter 10.

Having motivated this norm we proceed to develop an important tool for

tackling the optimal synthesis problem.

6.2 Riccati equation and Hamiltonian matrix

In this section we develop some matrix theory which will be required during

our development of the H2 optimal synthesis procedure.

A Hamiltonian matrix is a real matrix of the form

H =

�
A R

�Q �A�
�

where Q and R are n� n symmetric matrices, and A is also in Rn�n . The
Riccati equation associated with H is

A�X +XA+XRX +Q = 0 :

The connection between the two is seen in the following similarity

transformation of H which uses a solution to the Riccati equation�
I 0

�X I

��
A R

�Q �A�
� �

I 0

X I

�
=

�
A+RX R

0 �A� �XR

�
Since the transformed representation of H is a zero in its lower left cor-

ner, we see that X provides us with the natural coordinate system for an

invariant subspace of H . Speci�cally Im

�
I

X

�
is an invariant subspace of
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H . This observation, and the fact that A + RX is a representation for H

on that subspace is the key to this section. Hamiltonian matrices have the

following elementary property.

Proposition 6.1. H and �H are similar matrices (i.e. there exists T such

that H = �T�1HT ).
Proof . Let

J =

�
0 �I
I 0

�
;

and observe that J�1HJ = �H�. So H is similar to (�H)�, the transpose
of the real matrix �H . Now any matrix is similar to its transpose, therefore

H is similar of �H . �

This result implies that if � is an eigenvalue of H , �� is an eigenvalue of

the same multiplicity; in particular, their corresponding invariant subspaces

are of the same dimension. Note that since H is real its eigenvalues are also

mirrored across the real axis in C ; so eigenvalues will be mirrored over both

axis in the complex plane.

If H has no purely imaginary eigenvalues, it must have an equal number

in the left and right half planes of C . Therefore the invariant subspaces

corresponding to stable and unstable eigenvalues have both dimension n in

this case. This leads to the following de�nition:

De�nition 6.2. Suppose that H is a Hamiltonian matrix. H is said to be

in the domain of the Riccati operator if there exist square, n� n matrices

H� and X such that �
I

X

�
H� = H

�
I

X

�
; (6.1)

and H� is Hurwitz. In this case we de�ne the function Ric(H) = X.

The identity (6.1) implies that

Im

�
I

X

�
is an invariant subspace of H , of dimension n. Since H� is Hurwitz this

subspace corresponds to all eigenvalues of H in C� . From the previous

discussion this implies that H can have no purely imaginary eigenvalues;

however (6.1) is slightly stronger in that it sets a particular structure on the

subspace (the �rst n coordinates are independent). Also it should be clear

that X is necessarily unique, and thus the notation Ric(H) is unambiguous.

This latter fact is shown more explicitly in Proposition 6.4.

For Hamiltonian matrices of the above type we prove the following crucial

properties.
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Theorem 6.3. Suppose H is in the domain of the Riccati operator and

X = Ric(H). Then

(a) X is a symmetric matrix;

(b) X satis�es the Riccati equation;

(c) A+RX is Hurwitz.

Proof . We prove each of the properties in turn, starting with (a): again

let

J =

�
0 �I
I 0

�
;

and left multiply property (6.1) by J to get�
I

X

��
J

�
I

X

�
H� =

�
I

X

��
JH

�
I

X

�
:

Now JH is symmetric and therefore the left hand side above must be

symmetric meaning�
I

X

��
J

�
I

X

�
H� = �H�

�

�
I

X

��
J

�
I

X

�
:

From this we have that

(X� �X)H� +H�
�(X

� �X) = 0 :

Recall that H� is Hurwitz, and therefore this latter Lyapunov equation has

a unique solution; that is X� �X = 0.

We now show property (b): left multiply (6.1) by
�
�X I

�
to arrive at�

�X I
�
H

�
I

X

�
= [�X I ]

�
I

X

�
H� = 0 :

Now expand the left hand side, using the de�nition of H and get the Riccati

equation.

Finally we demonstrate that property (c) holds. Again we use the

relationship (6.1); this time left multiply by
�
I 0

�
and see that�

I 0
�
H

�
I

X

�
=
�
I 0

� � I
X

�
H� = H� :

The left hand side is equal to A+RX .

�

The last part of the preceding theorem, and the remark made ear-

lier about the Riccati operator being well de�ned, immediately imply the

following:

Proposition 6.4. There is at most one solution to the Riccati equation

such that A+RX is Hurwitz.
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To complete our work on Hamiltonian matrices and the Riccati equation

we consider a result which ties it directly to systems theory.

Theorem 6.5. Suppose that H is a Hamiltonian matrix and

(a) H has no purely imaginary axis eigenvalue;

(b) R is either positive or negative semide�nite;

(c) (A;R) is a stabilizable matrix pair.

Then H is in the domain of the Riccati operator.

Proof . Since H has no imaginary axis eigenvalue we see that by Propo-

sition 6.1 it has n eigenvalues in each of the open half planes, where

A 2 Rn�n . Thus there exist matrices X1; X2 and a Hurwitz matrix H�
in Rn�n such that

H

�
X1

X2

�
=

�
X1

X2

�
H� (6.2)

It is su�cient to show that X1 is nonsingular, then multiplication by X�1
1

turns (6.2) to the form (6.1) with X = X2X
�1
1 . Equivalently, we must show

that kerX1 = 0. We accomplish this in two steps.

Step A: Show X�
1X2 is symmetric.

Left multiply the last equation by�
X1

X2

��
J where J =

�
0 �I
I 0

�
to arrive at �

X1

X2

��
JH

�
X1

X2

�
=

�
X1

X2

��
J

�
X1

X2

�
H� :

As noted earlier JH is symmetric and so from the right hand side above

we get

(�X�
1X2 +X�

2X1)H� = �H�
�(�X�

1X2 +X�
2X1) :

Moving everything to one side of the equality we get a Lyapunov equation;

since H�
� is Hurwitz it has the unique solution of zero. That is

�X�
1X2 +X�

2X1 = 0 :

Step B: Show X1 is nonsingular.

We will show that kerX1 = 0. First we demonstrate that it is an invariant

subspace of H�. Left multiply (6.2) by
�
I 0

�
to get this is

AX1 +RX2 = X1H� : (6.3)

Now for any x 2 kerX1 we have

x�X�
2 (AX1 +RX2)x = x�X�

2X1H�x = x�X�
1X2H�x = 0 ;
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where we have used the result of Step A. We have apparently

x�X�
2RX2x = 0 ;

and since R is semi-de�nite that RX2x = 0. Finally multiply (6.3) by x to

get

RX2x = X1H�x = 0 ;

which says that kerX1 is invariant to H�.
We use this latter fact to show that kerX1 = 0. We know that if this

kernel is nonzero, then there exists a nonzero element x 2 kerX1 such that

H�x = �x ;

where the real part of � is negative. Thus it is enough to show that any x

satisfying this equation must be zero, which we now do.

Left multiply (6.2) by [0 I ] to get

�QX1 �A�X2 = X2H� ;

which therefore implies

(A� + �I)X2x = 0 :

Also from above RX2x = 0 and so

x�X�
2 [A+ ��I R] = 0 :

Now x�X�
2 = 0 since (A;R) is stabilizable, and so�

X1

X2

�
x = 0 :

Since the left hand matrix has full rank we see that x is necessarily zero.

�

To end we have the following exercise.

Corollary 6.6. Suppose (C;A;B) is a stabilizable and detectable matrix

triple, and

H =

�
A �BB�

�C�C �A�
�
:

Then H is in the domain of the Riccati operator.

We have developed all Riccati results that are required to pursue the

optimal H2 synthesis.

6.3 Synthesis

Our solution to the optimal synthesis problem will be strongly based on

the concept of an inner function, introduced in Chapter 3.5. In fact the
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connection between the H2 problem and Riccati equation techniques will

be based on a key Lemma about inner functions.

We recall that a transfer function Û(s) 2 H1 is called inner when it

satis�es

Û�(j!)Û(j!) = I for all ! 2 R:

Multiplication by an inner function de�nes an isometry on H2. This was

indicated before; however the property also extends to the matrix space

RH2 which we are considering in the present chapter. To see this, suppose

Û is inner and that Ĝ1 and Ĝ2 are in RH2, then

hÛĜ1; ÛĜ2i2 =
Z 1

�1
Tr(Û(j!)Ĝ1(j!))

�Û(j!)Ĝ2(j!)dw

=

Z 1

�1
TrĜ�1(j!)Ĝ2(j!)d!

=hĜ1; Ĝ2i2
Namely inner products are unchanged when such a function is inserted.

We now relate inner functions with Riccati equations.

Lemma 6.7. Consider the state-space matrices A;B;C;D, where (C; A; B)

is stabilizable and detectable and D�[C D] = [0 I ]. For

H =

�
A �BB�

�C�C �A�
�
;

de�ne X = Ric(H) and F = �B�X. Then

Û(s) =

�
A+BF B

C +DF D

�
(6.4)

is inner.

Proof . SinceX is a stabilizing solution, we have that A�BB�X = A+BF

is Hurwitz, therefore Û(s) 2 RH1. Now from the Riccati equation

A�X +XA+ C�C �XBB�X = 0

and the hypothesis it is veri�ed routinely that

(A+BF )�X +X(A+BF ) + (C +DF )�(C +DF ) = 0:

Therefore X is the observability Gramian corresponding to the realization

(6.4). Also, the Gramian X satis�es

(C +DF )�D +XB = F � +XB = 0:

Therefore we are in a position to apply Lemma 4.16, and conclude that

Û(s) is inner. �

As a �nal preliminary, we have the following matrix version of our earlier

vector valued result; this extension is a straightforward exercise.
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Proposition 6.8. If Ĝ1 and Ĝ2 are matrix valued function in RH2 and

RH?
2 , respectively, then

hĜ1; Ĝ2iL2 = 0 :

Observe that if Q̂ 2 RH2 then the function Q̂� 2 RH?
2 .

We are now in a position to state the main result, which explicitly gives

the optimal solution to the H2 synthesis problem. We spend the remainder

of the section proving the result using a sequence of lemmas. The technique

used exploits the properties of the Riccati equation, and in particular its

stabilizing solution.

Theorem 6.9. Suppose G is a state space system with realization

Ĝ(s) =

24 A B1 B2

C1 0 D12

C2 D21 0

35
where

(a) (C1; A;B1) is a stabilizable and detectable;

(b) (C2; A;B2) is a stabilizable and detectable;

(c) D�12
�
C1 D12

�
=
�
0 I

�
;

(d) D21

�
B�1 D�21

�
=
�
0 I

�
.

Then the optimal stabilizing controller to the H2 synthesis problem is given

by

K̂2(s) =

�
A2 �L
F 0

�
;

with

L = �Y C�2 ; F = �B�2X and A2 = A+B2F + LC2

where X = Ric(H); Y = Ric(J) and the Hamiltonian matrices are

H =

�
A �B2B

�
2

�C�1C1 �A�
�
; J =

�
A� �C�2C2

�B1B
�
1 �A

�
:

Furthermore the performance achieved by K2 is

kĜcB1k22 + kFĜfk22
where

Ĝc =

�
AF I

CF 0

�
and Ĝf =

�
AL BL

I 0

�
with AF = A+B2F; CF = C1+D12F;AL = A+LC2 and BL = B1+LD21.
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There are a number of conditions imposed on the state space matrices of

Ĝ(s) which we now comment on. The �rst two are that D11 and D22 both

be zero. That D11 = 0 is a reasonable assumption, which ensures that the

closed loop transfer is strictly proper provided K̂ is strictly proper. That

D22 = 0 is done purely out of convenience and can be removed.

Conditions (a) and (b) guarantee that both H and J are in the domain

of the Riccati operator; (a) is a technical condition that can be relaxed at

the expense of a more complicated proof. Clearly however the condition in

(b) is necessary for a stabilizing controller to exist.

The �nal two conditions are also made out of convenience. Condition

(c) can be interpreted as saying that the plant output C1x and the weight

D12u on the control e�ort are orthogonal, and all the control channels af-

fect the system performances directly. Condition (d) states that the system

disturbances and measurement noise are orthogonal; furthermore that the

noise channels a�ect all the system measurements. The relaxing of these

assumptions results in more complicated controller expressions and deriva-

tions, but the main method now pursued remains largely unchanged in such

a general scenario.

We can now embark on our quest to prove Theorem 6.9. The next result

is absolutely central to our technique of proof. Note that the hypothesis

are a subset of those in Theorem 6.9.

Lemma 6.10. Suppose G is a system with state space realization

Ĝ(s) =

24 A B1 B2

C1 0 D12

C2 D21 0

35
satisfying

(a) (C1; A;B1) is stabilizable and detectable;

(b) (C2; A;B2) is stabilizable and detectable;

(c) D�12
�
C1 D12

�
=
�
0 I

�
.

If a controller K internally stabilizes G, then the closed loop performance

satis�es

kS(Ĝ; K̂)k22 = kĜcB1k22 + kS(Ĝtmp; K̂)k22 ;
where

Ĝc =

�
AF I

CF 0

�
and Ĝtmp =

24 A B1 B2

�F 0 I

C2 D21 0

35
with AF = A+B2F , CF = C1 +D12F , F = �B�2X,

H =

�
A �B2B

�
2

�C�1C1 �A�
�
and X = Ric(H) :
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Proof . First we establish that all the objects in the theorem statement are

de�ned. Use hypothesis (a) and (b), and invoke Corollary 6.6 to see that

H is in the domain of the Riccati operator. From the same result we see

that AF is Hurwitz, and so Ĝc 2 RH2. Also notice that K must stabilize

Gtmp since the closed loop A-matrix is the same as that with G; hence

S(Ĝtmp; K̂) 2 RH2.

The closed loop state equations are

_x(t) = Ax(t) +B1w(t) +B2u(t)

z(t) = C1x(t) +D12u(t)

y(t) = C2x(t) +D21w(t) ;

with u = Ky. Now make the substitution v(t) = u(t)� Fx(t) to get

_x(t) = (A+B2F )x(t) +B1w(t) +B2v(t)

z(t) = (C1 +D12F )x(t) +D12v(t) :

Recalling the de�nition of Ĝc(s) and converting to transfer functions we

get

ẑ(s) = Ĝc(s)B1ŵ(s) + Û(s)v̂(s) ;

where Û has realization (AF ; B2; CF ; D12). It is routine to show that the

transfer function from w to v is S(Ĝtmp; K̂) and so

S(Ĝ; K̂) = ĜcB1 + ÛS(Ĝtmp;K) :

Next let us take the norm of S(Ĝ; K̂) making use of this new expression

kS(Ĝ; K̂)k22 = kĜcB1k22 + kÛS(Ĝtmp; K̂)k22 + 2RefhÛS(Ĝtmp;K); ĜcB̂1ig :
The key to the proof is that:

(i) Û is inner; this was proved in Lemma 6.7;

(ii) Û�ĜcB1 is in RH?
2 ; this fact follows by similar state-space

manipulations and is left as an exercise.

The conclusion now follows since kS(Ĝtmp; K̂)k2 = kÛS(Ĝtmp; K̂)k2,
and

hÛS(Ĝtmp; K̂); ĜcB1i2 = hS(Ĝtmp; K̂); Û�ĜcB1)i2 = 0 ;

where the orthogonality is clear because S(Ĝtmp; K̂) 2 RH2 as noted above.

�

The major point of this lemma is that it puts a lower bound on the achiev-

able performance, which is kĜcB1k22. Now K stabilizes G of the corollary

if and only if Gtmp is stabilized, and thus minimizing the closed loop

performance is equivalent to minimizing kS(Ĝtmp; K̂)k2 by choosing K.
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An additional remark is that in the special case of state feedback, i.e.

when C2 = I , D21 = 0, this second term can be made zero by the static

control lawK = F , as follows from the direct substitution into S(Ĝtmp; K̂).

Alternatively, revisiting the proof we note that u = Fx gives v = 0, and the

second term of the cost would not appear. Therefore Lemma 6.10 provides

a solution to the H2 problem in the state feedback case.

In the general case, the auxiliary variable v with its associated cost re-

ects the price paid by not having the state available for measurement.

This additional cost can now be optimized as well. Before addressing this,

we state a so-called duality result; its proof is an exercise involving only

the basic properties of matrix transpose and trace

Lemma 6.11. Suppose G has a realization (A;B;C;D);K has a realiza-

tion (AK ; BK ; CK ; DK), and  > 0. Then the following are equivalent.

(i) K internally stabilizes G and kS(Ĝ; K̂)k2 = ;

(ii) K 0 internally stabilizes G0 and kS(Ĝ0; K̂ 0)k2 = .

Here G0 has realization (A�; C�; B�; D�) and K 0 has realization (A�
K
; C�

K
; B�

K
; D�

K
)

The previous three results combine to give a further breakdown of the

closed loop transfer function of G and K.

Lemma 6.12. Let Gtmp be as de�ned in Lemma 6.10. If K internally

stabilizes Gtmp then

kS(Ĝtmp; K̂)k22 = kFĜfk22 + kS(Ê; K̂)k22
where

Ê(s) =

24 A �L B2

�F 0 I

C2 I 0

35
Proof . Start by applying Lemma 6.11 with G0 = Gtmp and K 0 = K to

get

kS(Ĝtmp; K̂)k2 = kS(Ĝ0
tmp

; K̂ 0)k2 :

Now apply Lemma 6.10 with G = G0
tmp

and K = K 0 to get

kS(Ĝ0
tmp

; K̂ 0)k22 = kĜ0
f
F �k22 + kS(Ê0; K̂ 0)k22

Finally applying Lemma 6.11 to the right hand side we get

kS(Ĝ0
tmp

; K̂ 0)k22 = kFĜfk22 + kS(Ê; K̂)k22 :

�

We can now completely prove Theorem 6.9.
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Proof . Observe that K2 is an observer based controller of the standard

form; also by our assumption, Theorem 6.3 and Corollary 6.6 we see AF
and AL are Hurwitz. Therefore K2 internally stabilizes G.

Invoke Lemma 6.10 and Lemma 6.12 to get

kS(Ĝ;K2)k22 = kĜcB1k22 + kFĜfk22 + kS(Ê; K̂2)k22 :

Since the �rst two terms on the right do not depend on K̂2 at all, it is

su�cient to show that kS(Ê; K̂2)k2 = 0. This is easily shown by writing

out the state space equations for the closed loop system S(Ê; K̂2).

�

At this point we have completely proved our optimal synthesis result.

Notice from the last proof that regardless of the controller K we have

kS(Ĝ; K̂)k22 = kĜcB1k22 + kFĜfk22 + kS(Ê; K̂)k22 ;
providing that K internally stabilizes G, or equivalently E. An alternative

approach to the H2 synthesis problem we just solved involves using the

controller parameterization of Chapter 5 in terms of the RH1 parameter

Q̂. Then our synthesis problem becomes

minimize kT̂1 � T̂2Q̂T̂3k2 with Q̂ 2 RH1,
a so-called model matching problem. If we use the stabilizing feedback

gains F and L of this section, in the state space coprime factorization of

Chapter 5, we can show that the optimal solution to this model matching

problem occurs when Q̂ = 0. We leave this as a possible exercise.

6.4 State feedback H2 synthesis via LMIs

We have just described a method of constructing the optimal solution to

the H2 synthesis problem, which uses the Riccati equation as a central

tool. In this section we investigate obtaining a solution via LMI machinery

instead, and focus our attention on the simpli�ed case of state feedback.

Our goal is to catch a quick glimpse of how LMI techniques can be used to

solve this type of synthesis problem.

Our �rst result characterizes the RH2 norm and internal stability in

terms of linear matrix inequalities.

Proposition 6.13. Suppose P is a state space system with realization

(A; B; C). Then

A is Hurwitz and kP̂k2 < 1;

if and only if, there exists a symmetric matrix X > 0 such that TrCXC� <
1 and

AX +XA� +BB� < 0:
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Proof . To show the \only if" part: by hypothesis the system controllability

gramian Xc satis�es

TrCXcC
� < 1

and A is Hurwitz. Now the expression

X =

Z 1

0

eAt
�
B �I

� �B�
�I

�
eA

�
tdt;

is continuous in �, and equal toXc when � = 0. Therefore, for some � > 0, we

have TrCXC� < 1. This matrix X clearly satis�es the Lyapunov equation

AX +XA� +BB� + �2I = 0;

which means that the inequality of the claim is met.

The \if" direction follows the same idea. By assumption there exists X

which is a positive de�nite solution to

AX +XA� +BB� < 0;

and satis�es TrCXC� < 1. Thus A is necessarily Hurwitz, and X is a

generalized controllability gramian; so we know from Chapter 3.5 that X �
Xc, where Xc is the controllability gramian. This implies that TrCXC

� �
TrCXcC

� and thus kP̂k2 < 1. �

We are now ready to formulate the state feedback synthesis problem.

The plant G has the following form

Ĝ(s) :=

24 A B1 B2

C1 0 D12

I 0 0

35 ;
where A 2 Rn�n ; B1 2 Rn�p ; B2 2 Rn�m ; C1 2 Rq�n . The controller is
taken to be simply a static feedback gain K̂(s) = DK . While more generally

we could use a dynamic controller, we have already seen in the previous

section that the static restriction entails no loss of performance in the state

feedback case. Our �rst synthesis result is based on the same change of

matrix variables which was encountered in the study of stabilization.

Proposition 6.14. There exists a feedback gain K̂(s) = DK that

internally stabilizes G and satis�es

kS(Ĝ; K̂)k2 < 1;

if and only if, there exist a rectangular matrix Y 2 Rm�n such that

DK = Y X�1;

where X > 0 and satis�es the inequalities�
A B2

� �X
Y

�
+
�
X Y �

� �A�
B�2

�
+B1B

�
1 < 0; (6.5)

Tr(C1X +D12Y )X
�1(C1X +D12Y )

� < 1: (6.6)
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Proof . Simply write out the state space equations corresponding to the

interconnection shown in Figure 6.1.

_x(t) = (A+B2DK)x(t) +B1w(t)

z(t) = (C1 +D12DK)x(t):

Now invoking Proposition 6.13 we see that our problem can be solved if

and only if there exist DK and X > 0 satisfying

(A+B2DK)X +X(A+B2DK)
� +B1B1� < 0

Tr(C1 +D12DK)X(C1 +D12DK)
� < 1

Now introducing the change of variables DKX = Y these conditions are

equivalent to (6.5) and (6.6). �

While we have transformed the H2 synthesis problem to a set of matrix

inequalities, this is not yet an LMI problem since (6.6) is not convex in X ,

Y . Now we recall our discussion from Chapter 1, where it was mentioned

that often problems which do not appear to be convex can be transformed

into LMI problems by a Schur complement operation. This is indeed the

case here, although it will also be necessary to introduce an additional vari-

able, a so-called slack variable. We explain these techniques while obtaining

our main result.

Theorem 6.15. There exists a feedback gain K̂(s) = DK that internally

stabilizes G and satis�es

kS(Ĝ; K̂)k2 < 1;

if and only if, there exist square matrices X 2 Rn�n Z 2 Rq�q and a

rectangular matrix Y 2 Rm�n such that

DK = Y X�1;

and the inequalities�
A B2

� �X
Y

�
+
�
X Y �

� �A�
B�2

�
+B1B

�
1 < 0; (6.7)�

X (C1X +D12Y )
�

(C1X +D12Y ) Z

�
> 0; (6.8)

Tr(Z) < 1 (6.9)

are satis�ed.

Proof . It su�ces to show that conditions (6.8) and (6.9) are equivalent to

(6.6) and X > 0.

Suppose (6.6) holds; since the trace is monotonic under matrix in-

equalities, then we can always �nd a matrix Z satisfying Tr(Z) < 1

and

(C1X +D12Y )X
�1(C1X +D12Y )

� < Z
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indeed it su�ces to perturb the matrix on the left by a small positive

matrix. Now from the Schur complement formula of Theorem 1.10, the

above inequality and X > 0 are equivalent to (6.8).

The previous steps can be reversed to obtain the converse implication.

�

Thus we have reduced the static state feedback H2 synthesis problem to

a set of convex conditions in the three variables X , Y and Z.

The above derivations exhibit a common feature of tackling problems via

LMIs: there is always an element of \art" involved in �nding the appro-

priate transformation or change of variables that would render a problem

convex, and success is never guaranteed. In the next chapter we will present

additional tools to aid us in this process. The references contain a more ex-

tensive set of such tools, in particular how to tackle the general (dynamic

output feedback) H2 synthesis problem via LMI techniques.

We are now ready to turn our attention to a new performance criterion;

it will be studied purely from an LMI point of view.

6.5 Exercises

1. Verify that for a multi-input sytsem P , kP̂k22 is the sum of out-

put energies corresponding to impulses �(t)ek applied in each input

channel.

2. Prove Corollary 6.6.

3. Normalized coprime factorizations. This exercise complements Ex-

ercise 6, Chapter 5. We recall that a right coprime factorization

P̂ = N̂M̂�1 of a proper P̂ (s) is called normalized when

�
N̂(s)

M̂(s)

�
is inner.

(a) Consider P̂ =

�
A B

C 0

�
, and assume the realization is minimal.

Let F = �B�X , where

X = Ric

�
A �BB�

�C�C �A�
�
:

Show that �
N̂(s)

M̂(s)

�
=

24 A+BF B

C 0

F I

35
de�nes a normalized right coprime factorization for P̂ .

(b) Extend the result for any P̂ (not necessarily strictly proper).
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4. In the proof of Lemma 6.10, verify the claim (ii) that Û�ĜcB1 is in

RH?
2 .

5. Prove the dualization result of Lemma 6.11.

6. Let Xs be denote the stabilizing solution of the Riccati equation

A�X +XA+ C�C �XBB�X = 0; (6.10)

where we assume that (A;B;C) is controllable and observable.

(a) For any other symmetric solution X to (6.10) show that

(A�BB�X)(Xs �X) + (Xs �X)(A�BB�X)� +

(Xs �X)BB�(Xs �X) = 0

Use this to prove X � Xs, i.e. Xs is the maximizing solution to

(6.10).

(b) Now introduce the LMI�
A�X +XA+ C�C XB

B�X I

�
� 0:

Show that if X satis�es the LMI, then also X � Xs.

(c) Show that there exists an anti-stabilizing solutionXa to the Ric-

cati equation (6.10), i.e. a solution such that all the eigenvalues

of the matrix A�BB�Xa are on the right half plane Re(s) > 0.

(d) Prove that Xa � X � Xs for any solution to (6.10), or the LMI

in (b).

(e) Show that the inequality Xa < Xs is strict, and that these

are the only two solutions to (6.10) with this property. Hint:

Relate Xs �Xa to the controllability gramian of the pair (A �
BB�Xs; B).

7. Here we investigate some uniqueness properties ofH2 optimal control.

(a) Show by counter example that the optimal controller con-

structed in this chapter need not be the only controller that

achieves optimum performance;

(b) As already noted, the H2 optimal control synthesis can be posed

as the model matching problem

minimize kT̂1 � T̂2Q̂T̂3k2; with Q̂ 2 RH1.

This is simply done by invoking the Youla parametrization. Show

that the optimal closed loop transfer function, if one exists, is

unique. Hint: recall that RH2 is an inner product space, and

realize that the above model matching problem can be viewed

as �nding the nearest point in a subspace of RH2 to T̂1.
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Notes and references

Optimal H2 control has a long history, and is more commonly known as

linear quadratic gaussian (LQG) control, because of its stochastic interpre-

tation outlined at the beginning of this chapter. It gets its roots from the

papers [63, 66] on Kalman �lters. A more extensive historical treatment of

this subject, including detailed references, can be found in the books [74]

and [3]. The solution given here is based on the famous paper [24], where

in addition to the optimal controller derived here, all possible controllers

satisfying a particular H2 performance level are parametrized. The state

feedback solution given here in terms of LMIs �rst appears in [36].

The main analytical tool used in this chapter is the Riccati equation,

which has a substantial research literature associated with it. We have just

provided a glimpse for our purposes; however see the recent monograph [75],

and also the classic survey article [141] for additional details and references

on these equations. For work on computational algorithms see for instance

[21].

LMI solutions to many control synthesis problems have appeared in

recent years. For a general synthesis method applicable in particular to

output-feedback H2 synthesis, see [120].
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7

H1 Synthesis

In this chapter we consider optimal synthesis with respect to the H1 norm

introduced in Chapter 3. Again we are concerned with the feedback ar-

rangement of Figure 6.1 where we have two state space systems G and K,

each having their familiar role.

We will pursue the answer to the following question: does there exist a

state space controller K such that

� The closed loop system is internally stable;

� The closed loop performance satis�es

kS(Ĝ; K̂)k1 < 1 :

Thus we only plan to consider the problem of making the closed loop con-

tractive in the sense of H1. It is clear, however, that determining whether
there exists a stabilizing controller so that kS(Ĝ; K̂)k1 < , for some con-

stant , can be achieved by rescaling the  dependent problem to arrive

at the contractive version given above. Furthermore, by searching over ,

our approach will allow us to get as close to the minimal H1 norm as we

desire, but in contrast to our work on H2 optimal control, we will not seek

a controller that exactly optimizes the H1 norm.

There are many approaches for solving the H1 control problem. Proba-

bly the most celebrated solution is in terms of Riccati equations of a similar

style to the H2 solution of Chapter 6. Here we will present a solution based

entirely on linear matrix inequalities, which has the main advantage that it

can be obtained with relatively straightforward matrix tools, and without

any restrictions on the problem data. In fact Riccati equations and LMIs
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are intimately related, an issue we will explain when proving the Kalman-

Yakubovich-Popov lemma concerning the analysis of the H1 norm of a

system, which will be key to the subsequent synthesis solution.

Before getting into the details of the problem, we make a few comments

about the motivation for this optimization.

As discussed in Chapter 3, the H1 norm is the L2-induced norm of a

causal, stable, linear-time invariant system. More precisely, given a causal

linear time-invariant operator G : L2(�1;1) ! L2(�1;1), the cor-

responding operator in the isomorphic space L̂2(jR) is a multiplication

operator M
Ĝ
for a certain Ĝ(s) 2 H1, and

kGkL2!L2
= kM

Ĝ
k
L̂2!L̂2

= kĜk1
What is the motivation for minimizing such an induced norm? If we refer

back to the philosophy of \making error signals small" discussed in Chapter

6, we are minimizing the maximum \gain" of the system in the energy or

L2 sense. Equivalently, the excitation w is considered to be an arbitrary L2
signal and we wish to minimize its worst-case e�ect on the energy of z. This

may be an appropriate criterion if, as opposed to the situation of Chapter

6, we know little about the spectral characteristics of w. We will discuss,

in more detail, alternatives and tradeo�s for noise modeling in Chapter 9.

There is however a more important reason than noise rejection that mo-

tivates an induced norm criterion; as seen in Section 3.1.2, a contractive

operator Q has the property that the invertibility of I � Q is ensured;

this so-called small-gain property will be key to ensuring stability of cer-

tain feedback systems, in particular when some of the components are not

precisely speci�ed. This reason has made H1 control a central subject in

control theory; further discussion of this application is given later in the

course.

7.1 Two important matrix inequalities

The entire synthesis approach of the chapter revolves around the two tech-

nical results presented here. The �rst of these is a result purely about

matrices; the second is an important systems theory result and is frequently

called the Kalman-Yacubovich-Popov lemma, or KYP lemma for short.

We begin by stating the following which the reader can prove as an

exercise.

Lemma 7.1. Suppose �P and �Q are matrices satisfying ker �P = 0 and

ker �Q = 0. Then for every matrix Y there exists a solution J to

�P �J �Q = Y:

The above lemma is used to prove the next one which is one of the two

major technical results of this section.
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Lemma 7.2. Suppose

(a) P;Q and H are matrices and that H is symmetric;

(b) The matrices WP and WQ are full rank matrices satisfying ImWP =

kerP and ImWQ = kerQ.

Then there exists a matrix J such that

H + P �J�Q+Q�JP < 0 ; (7.1)

if and only if, the inequalities

W �
P
HWP < 0 and W �

Q
HWQ < 0

both hold.

Observe that when the kernels of P and Q are not both nonzero the result

does not apply as stated. However it is readily seen from Lemma 7.1, that

if both of the kernels are zero then there is always a solution J . If for

example only kerP = 0 then W �
Q
HWQ < 0 is a necessary and su�cient

condition for a solution to (7.1) to exist, as follows by simpli�ed version of

the following proof.

Proof . We will show the equivalence of the conditions directly by

construction. To begin de�ne V1 to be a matrix such that

ImV1 = kerP \ kerQ;

and V2 and V3 such that

Im
�
V1 V2

�
= kerP and Im

�
V1 V3

�
= kerQ:

Without loss of generality we assume that V1, V2 and V3 have full column

rank and de�ne V4 so that

V =
�
V1 V2 V3 V4

�
is square and nonsingular. Therefore the LMI (7.1) above holds, if and only

if

V �HV + V �P �J�QV + V �Q�JPV < 0 does. (7.2)

Now PV and QV are simply the matrices P and Q on the domain basis

de�ned by V ; therefore they have the form

PV =
�
0 0 P1 P2

�
and QV =

�
0 Q1 0 Q2

�
;

we also de�ne the block components

V �HV =:

2664
H11 H12 H13 H14

H�
12 H22 H23 H24

H�
13 H�

23 H33 H34

H�
14 H�

24 H�
34 H44

3775 :
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Further de�ne the variable Y by

Y =

�
Y11 Y12
Y21 Y22

�
=

�
P �1
P �2

�
J�
�
Q1 Q2

�
:

From their de�nitions ker
�
P1 P2

�
= 0 and ker

�
Q1 Q2

�
= 0, and so by

Lemma 7.1 we see that Y is freely assignable by choosing an appropriate

matrix J .

Writing out inequality (7.2) using the above de�nitions we get2664
H11 H12 H13 H14

H�
12 H22 H23 + Y �11 H24 + Y �21

H�
13 H�

23 + Y11 H33 H34 + Y12
H�
14 H�

24 + Y21 H�
34 + Y �12 H44 + Y22 + Y �22

3775 < 0:

Apply the Schur complement formula to the upper 3� 3 block, and we see

the above holds, if and only if, the two following inequalities are met.

�H :=

24H11 H12 H13

H�
12 H22 H23 + Y �11

H�
13 H�

23 + Y11 H33

35 < 0

and H44 + Y22 + Y �22 �

24 H14

H24 + Y �21
H34 + Y12

35� �H�1

24 H14

H24 + Y �21
H34 + Y12

35 < 0

As already noted above Y is freely assignable and so we see that provided

the �rst inequality can be achieved by choosing Y11, the second can always

be met by appropriate choice of Y12, Y21 and Y22. That is the above two

inequalities can be achieved, if and only if, �H < 0 holds for some Y11. Now

applying a Schur complement on �H with respect to H11, we obtain24H11 0 0

0 H22 �H�
12H

�1
11 H12 Y �11 +X�

0 Y11 +X H33 �H�
13H

�1
11 H13

35 < 0;

where X = H�
23 � H�

13H
�1
11 H12. Now since Y11 is freely assignable we see

readily that the last condition can be satis�ed, if and only if, the diagonal

entries of the left hand matrix are all negative de�nite. Using the Schur

complement result twice these three conditions can be converted to the

equivalent conditions�
H11 H12

H�
12 H22

�
< 0 and

�
H11 H13

H�
13 H33

�
< 0:

By the choice of our basis we see that these hold, if and only if,W �
P
HWP <

0 and W �
Q
HWQ < 0 are both met. �

Having proved this matrix result we move on to our second result, the

KYP lemma.
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7.1.1 The KYP Lemma

There are many versions of this result, which establishes the equivalence

between a frequency domain inequality and a state-space condition in terms

of either a Riccati equation or an LMI. The version given below turns an

H1 norm condition into an LMI. Being able to do this is very helpful for

attaining our goal of controller synthesis, however it is equally important

simply as a �nite dimensional analysis test for transfer functions.

Lemma 7.3. Suppose M̂(s) = C(Is�A)�1B+D. Then the following are

equivalent conditions.

(i) The matrix A is Hurwitz and

kM̂k1 < 1 ;

(ii) There exists a matrix X > 0 such that�
C�

D�

� �
C D

�
+

�
A�X +XA XB

B�X �I

�
< 0 : (7.3)

The condition in (ii) is clearly an LMI and gives us a very convenient way

to evaluate the H1 norm of a transfer function. In the proof below we see

proving that condition (ii) implies that (i) holds is reasonably straightfor-

ward, and involves showing the direct connection between the above LMI

and the state space equations that describeM . Proving the converse is con-

siderably harder; fortunately we will be able to exploit the Riccati equation

techniques which were introduced in Chapter 6. An alternative proof, which

employs only matrix arguments, will be given later in the course.

Proof . We begin by showing (ii) implies (i). The top left block in (7.3)

states that A�X + XA + C�C < 0. Since X > 0 we see that A must be

Hurwitz.

It remains to show contractiveness which we do by employing a system-

theoretic argument based on the state equations for M . Using the strict

inequality (7.3) choose 1 > � > 0 such that�
C�

D�

� �
C D

�
+

�
A�X +XA XB

B�X �(1� �)I

�
< 0 (7.4)

holds. Let w 2 L2[0; 1) and realize that in order to show that M is

contractive, it is su�cient to show that kzk2 � (1��)kwk2, where z :=Mw.

The state space equations relating w and z are

_x(t) = Ax(t) +Bw(t); x(0) = 0;

z(t) = Cx(t) +Dw(t):

Now multiplying inequality (7.4) on the left by
�
x�(t) w�(t)

�
and on the

right by the adjoint we have

jz(t)j22 + x�(t)X(Ax(t) +Bw(t)) + (Ax(t) +Bw(t))�Xx(t)� (1� �)jw(t)j22 � 0
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By introducing the storage function V : Rn ! R, de�ned by V (x(t)) =

x�(t)Xx(t), we arrive at the so-called dissipation inequality

_V + jz(t)j22 � (1� �)jw(t)j22:
Integrating on an interval [0; T ], recalling that x(0) = 0, gives

x(T )�Xx(T ) +
Z

T

0

jz(t)j22dt � (1� �)

Z
T

0

jw(t)j22dt:

Now let T ! 1; since w 2 L2 and A is Hurwitz, then x(T ) converges to

zero and therefore we �nd

kzk22 � (1� �)kwk22;
which completes this direction of the proof.

We now tackle the direction (i) implies (ii). To simplify the expressions

we will write the derivation in the special case D = 0, but an analogous

argument applies to the general case (see the exercises). Starting from

M̂(s) =

�
A B

C 0

�
;

and recalling the de�nition of M̂�(s) from Chapter 6, we derive the state-

space representation

I � M̂�(s)M̂(s) =

24 A 0 �B
�C�C �A� 0

0 B� I

35 :
It is easy to verify that

[I � M̂�(s)M̂(s)]�1 =

24 A BB� B

�C�C �A� 0

0 B� I

35 : (7.5)

Since kM̂k1 < 1 by hypothesis, we conclude that [I � M̂�(s)M̂(s)]�1 has
no poles on the imaginary axis. Furthermore we now show, using the PBH

test, that the realization (7.5) has no unobservable eigenvalues that are

purely imaginary. Suppose that24j!0I �A �BB�
C�C j!0I +A�

0 B�

35�x1
x2

�
= 0;

for some vectors x1 and x2. Then we have the following chain of

implications:

B�x2 = 0 implies (j!0I �A)x1 = 0;

therefore x1 = 0 since A is Hurwitz;

this means (j!0I +A�)x2 = 0;

which implies x2 = 0 again because A is Hurwitz.
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We conclude that (7.5) has no unobservable eigenvalues on the imagi-

nary axis; an analogous argument shows the absence of uncontrollable

eigenvalues. This means that the matrix

H =

�
A BB�

�C�C �A�
�

has no purely imaginary eigenvalues. Referring to Theorem 5 in Chapter 6,

notice that BB� � 0 and (A;BB�) is stabilizable since A is Hurwitz. Hence

H is in the domain of the Riccati operator, and we can de�ne X0 = Ric(H)

satisfying

A�X0 +X0A+ C�C +X0BB
�X0 = 0 (7.6)

and A + BB�X0 Hurwitz. Also note that (7.6) implies A�X0 +X0A � 0,

therefore from our work on Lyapunov equations we see that

X0 � 0

since A is Hurwitz. To obtain the LMI characterization of (ii) we must

slightly strengthen the previous relationships. For this purpose de�ne �X to

be the solution of the Lyapunov equation

(A+BB�X0)
� �X + �X(A+BB�X0) = �I: (7.7)

Since (A+BB�X0) is Hurwitz we have �X > 0. Now let X = X0+ � �X > 0,

which is positive de�nite for all � > 0. Using (7.6) and (7.7) we have

A�X +XA+ C�C +XBB�X = ��I + �2 �XBB� �X:

Choose � > 0 su�ciently small so that this equation is negative de�nite.

Hence we have found X > 0 satisfying the strict Riccati Inequality

A�X +XA+ C�C +XBB�X < 0:

Now applying a Schur complement operation, this inequality is equivalent

to �
A�X +XA+ C�C XB

B�X �I

�
< 0 ;

which is (7.3) for the special case D = 0. �

The preceding proof illustrates some of the deepest relationships of linear

systems theory. We have seen that frequency domain inequalities are asso-

ciated with dissipativity of storage functions in the time domain, and also

the connection between LMIs (linked to dissipativity) and Riccati equations

(which arise in quadratic optimization).

In fact this latter connection extends as well to problems of H1 syn-

thesis, where both Riccati equations and LMIs can be used to solve the

suboptimal control problem. In this course we will pursue the LMI solu-

tion. Surprisingly the two results of this section are all we require, together

with basic matrix algebra, to solve our control problem.
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7.2 Synthesis

We start with the state space realizations that describe the systems G and

K:

Ĝ(s) =

24 A B1 B2

C1 D11 D12

C2 D21 0

35 ; K̂(s) =

�
AK BK

CK DK

�
:

Notice that we have assumed D22 = 0. Removing this assumption leads

to more complicated formulae, but the technique is identical. We make no

other assumptions about the state space systems. The state dimensions of

the nominal system and controller will be important: A 2 Rn�n , AK 2
RnK�nK .
Our �rst step is to combine these two state space realizations into one

which describes the map from w to z. We obtain

S(Ĝ; K̂) =

�
AL BL

CL DL

�
=

24 A+B2DKC2 B2CK B1 +B2DKD21

BKC2 AK BKD21

C1 +D12DKC2 D12CK D11 +D12DKD21

35 :
Now de�ne the matrix

J =

�
AK BK

CK DK

�
;

which collects the representation forK into one matrix. We can parametrize

the closed-loop relation in terms of the controller realization as follows. First

make the following de�nitions.

�A =

�
A 0

0 0

�
�B =

�
B1

0

�
(7.8)

�C =
�
C1 0

�
C =

�
0 I

C2 0

�
B =

�
0 B2

I 0

�
D12 =

�
0 D12

�
D21 =

�
0

D21

�
which are entirely in terms of the state space matrices for G. Then we have

AL = �A+BJC BL = �B +BJD21

CL = �C +D12JC DL = D11 +D12JD21

(7.9)

The crucial point here is that the parametrization of the closed loop state

space matrices is a�ne in the controller matrix J .

Now we are looking for a controller K such that the closed loop is con-

tractive and internally stable. The following form of the KYP lemma will

help us.
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Corollary 7.4. Suppose M̂L(s) = CL(Is � AL)
�1BL + DL. Then the

following are equivalent conditions.

(a) The matrix AL is Hurwitz and kM̂Lk1 < 1;

(b) There exists a symmetric positive de�nite matrix XL such that24A�LXL +XLAL XLBL C�
L

B�
L
XL �I D�

L

CL DL �I

35 < 0 :

This result is readily proved from Lemma 7.3 by applying the Schur comple-

ment formula. Notice that the matrix inequality in (b) is a�ne in XL and

J individually, but it is not jointly a�ne in both variables. The main task

now is to obtain a characterization where we do have a convex problem.

Now de�ne the matrices

PXL
=
�
B�XL 0 D�12

�
Q =

�
C D21 0

�
and further

HXL
=

24 �A�XL +XL
�A XL

�B �C�
�B�XL �I D�11
�C D11 �I

35 :

It follows that the inequality in (b) above is exactly

HXL
+Q�J�PXL

+ P �
XL
JQ < 0 :

Lemma 7.5. Given the above de�nitions there exists a controller synthesis

K if and only if there exists a symmetric matrix XL > 0 such that

W �
PX

L

HXL
WPX

L

< 0 and W �
Q
HXL

WQ < 0 ;

where WPX
L

and WQ are as de�ned in Lemma 7.2.

Proof . From the discussion above we see that a controller K exists if and

only if there exists XL > 0 satisfying

HXL
+Q�J�PXL

+ P �
XL
JQ < 0 :

Now invoke Lemma 7.2.

�

This lemma says that a controller exists if and only if the two matrix

inequalities can be satis�ed. Each of the inequalities is given in terms of the

state space matrices of G and the variable XL. However we must realize

that since XL appears in both HXL
and WPX

L

, that these are not LMI

conditions. Converting to an LMI formulation is our next goal, and will
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require a number of steps. Given a matrix XL > 0 de�ne the related matrix

TXL
=

24 �AX�1
L

+X�1
L

�A� �B X�1
L

�C�
�B� �I D�11

�CX�1
L

D11 �I

35 ; (7.10)

and the matrix

P =
�
B� 0 D�12

�
(7.11)

which only depends on the state space realization of G. The next lemma

converts one of the two matrix inequalities of the lemma, involving HXL
,

to one in terms of TXL
.

Lemma 7.6. Suppose XL > 0. Then

W �
PX

L

HXL
WPX

L

< 0; if and only if, W �
P
TXL

WP < 0:

Proof . Start by observing that

PXL
= PS ;

where

S =

24XL 0 0

0 I 0

0 0 I

35 :

Therefore we have

kerPXL
= S�1 kerP :

Then using the de�nitions of WPX
L

and WP we can set

WPX
L

= S�1WP :

Finally we have that W �
PX

L

HXL
WPX

L

< 0 if and only if

W �
P
(S�1)�HXL

S�1WP < 0

and it is routine to verify (S�1)�HXL
S�1 = TXL

.

�

Combining the last two lemmas we see that there exists a controller of

state dimension nK if and only if there exists a symmetric matrix XL > 0

such that

W �
P
TXL

WP < 0 and W �
Q
HXL

WQ < 0 : (7.12)

The �rst of these inequalities is an LMI in the matrix variable X�1
L

, where

as the second is an LMI in terms of XL. However the system of both

inequalities is not an LMI. Our intent is to convert these seemingly non-

convex conditions into an LMI condition.
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Recall that XL is a real and symmetric (n+nK)� (n+nK) matrix; here

n and nK are state dimensions of G and K. Let us now de�ne the matrices

X and Y which are n� n submatrices of XL and X�1
L

, by

XL =:

�
X X2

X�
2 X3

�
and X�1

L
=:

�
Y Y2
Y �2 Y3

�
: (7.13)

We now show that the two inequality conditions listed in (7.12), only

constrain the submatrices X and Y .

Lemma 7.7. Suppose XL is a positive de�nite (n+nK)�(n+nK) matrix

and X and Y are n� n matrices de�ned as in (7.13). Then

W �
P
TXL

WP < 0 and W �
Q
HXL

WQ < 0 ;

if and only if, the following two matrix inequalities are satis�ed

(a)

�
NX 0

0 I

�� 24A�X +XA XB1 C�1
B�1X �I D�11
C1 D11 �I

35�NX 0

0 I

�
< 0 ;

(b)

�
NY 0

0 I

�� 24AY + Y A� Y C�1 B1

C1Y �I D11

B�1 D�11 �I

35 �NY 0

0 I

�
< 0 ;

where NX and NY are full-rank matrices whose images satisfy

ImNX = ker
�
C2 D21

�
ImNY = ker

�
B�2 D�12

�
:

Proof . The proof amounts to writing out the de�nitions and removing

redundant constraints. Let us show that W �
P
TXL

WP < 0 is equivalent to

the LMI in (b).

From the de�nitions of TXL
in (7.10), and �A, �B and �C in (7.8) we get

TXL
=

2664
AY + Y A� AY2 B1 Y C�1
Y �2 A

� 0 0 Y �2 C
�
1

B�1 0 �I D�11
C1Y C1Y2 D11 �I

3775
Also recalling the de�nition of P in (7.11), and substituting for B and D12

from (7.8) yields

P =

�
0 I 0 0

B�2 0 0 D�12

�
:
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Thus the kernel of P is the image of

WP =

2664
V1 0

0 0

0 I

V2 0

3775
where �

V1
V2

�
= NY

spans the kernel of
�
B�2 D�12

�
as de�ned above. Notice that the second

block row of WP is exactly zero, and therefore the second block-row and

block-column of TXL
, as explained above, do not enter into the constraint

W �
P
TXL

WP < 0. Namely this inequality is24V1 0

0 I

V2 0

35� 24AY + Y A� B1 Y C�1
B�1 �I D�11
C1Y D11 �I

3524V1 0

0 I

V2 0

35 < 0 :

By applying the permutation24V1 0

0 I

V2 0

35 =

24I 0 0

0 0 I

0 I 0

35�NY 0

0 I

�
we arrive at (b).

Using a nearly identical argument, we can readily show thatW �
Q
HXL

WQ <

0 is equivalent to LMI (a) in the theorem statement.

�

What we have shown is that a controller synthesis exists if and only if

there exists an (n+nK)� (n+nK) matrix XL that satis�es conditions (a)

and (b) of the last lemma. These latter two conditions only involve X and

Y , which are submatrices of XL and X�1
L

respectively. Our next result tell

us under what conditions, given arbitrary matrices X and Y , it is possible

to �nd a positive de�nite matrix XL that satis�es (7.13).

Lemma 7.8. Suppose X and Y are symmetric, positive de�nite matrices

in Rn�n ; and nK is a positive integer. Then there exist matrices X2; Y2 2
Rn�nK and symmetric matrices X3; Y3 2 RnK�nK , satisfying�

X X2

X�
2 X3

�
> 0 and

�
X X2

X�
2 X3

��1
=

�
Y Y2
Y �2 Y3

�
if and only if �

X I

I Y

�
� 0 and rank

�
X I

I Y

�
� n+ nK : (7.14)
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Proof . First we prove that the �rst two conditions imply the second two.

From �
X X2

X�
2 X3

��
Y Y2
Y �2 Y3

�
= I (7.15)

it is routine to verify that

0 �
�
I 0

Y Y2

� �
X X2

X�
2 X3

� �
I Y

0 Y �2

�
=

�
X I

I Y

�
:

Also the Schur complement relationship�
X I

I Y

�
=

�
I Y �1

0 I

� �
X � Y �1 0

0 Y

��
I 0

Y �1 I

�
(7.16)

implies that

rank

�
X I

I Y

�
= n+ rank(X � Y �1) = n+ rank(XY � I) � n+ nk;

where the last inequality follows from (7.15): I �XY = X2Y
�
2 and X2 2

Rn�nK .
To prove \if" we start with the assumption that (7.14) holds; therefore

(7.16) gives

X � Y �1 � 0 and rank (X � Y �1) � nK :

These conditions ensure that there exists a matrix X2 2 Rn�nK so that

X � Y �1 = X2X
�
2 � 0 :

From this and the Schur complement argument we see that�
X X2

X�
2 I

�
> 0 :

Also �
X X2

X�
2 I

��1
=

�
Y �Y X2

�X�
2Y X�

2Y X2 + I

�
and so we set X3 = I .

�

The lemma states that a matrixXL in R(n+nK )�(n+nK), satisfying (7.13),

can be constructed from X and Y exactly when the LMI and rank condi-

tions in (7.14) are satis�ed. The rank condition is not in general an LMI,

but notice that

rank

�
X I

I Y

�
� 2n :

Therefore we see that if nK � n in the lemma, the rank condition becomes

vacuous and we are left with only the LMI condition. We can now prove

the synthesis theorem.
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Theorem 7.9. A synthesis exists for the H1 problem, if and only if there

exist symmetric matrices X > 0 and Y > 0 such that

(a) �
NX 0

0 I

�� 24A�X +XA XB1 C�1
B�1X �I D�11
C1 D11 �I

35�NX 0

0 I

�
< 0 ;

(b) �
NY 0

0 I

�� 24AY + Y A� Y C�1 B1

C1Y �I D11

B�1 D�11 �I

35 �NY 0

0 I

�
< 0 ;

(c) �
X I

I Y

�
� 0;

where NX and NY are full-rank matrices whose images satisfy

ImNX = ker
�
C2 D21

�
ImNY = ker

�
B�2 D�12

�
:

Proof . Suppose a controller exists, then by Lemma 7.7 a controller exists

if and only if the inequalities

W �
P
TXL

WP < 0 and W �
Q
HXL

WQ < 0

hold for some symmetric, positive de�nite matrix XL in R(n+nK )�(n+nK ).

By Lemma 7.7 these LMIs being satis�ed imply that (a) and (b) are met.

Also invoking Lemma 7.8 we see that (c) is satis�ed.

Showing that (a{c) imply the existence of a synthesis is essentially the

reverse process. We choose nK � n, in this way the rank condition in

Lemma 7.8 is automatically satis�ed, and thus there exists an XL in

R(n+nK )�(n+nK) which satis�es (7.13). The proof is now completed by using

XL and (a{b) together with Lemma 7.7.

�

This theorem gives us exact conditions under which a solution exists

to our H1 synthesis problem. Notice that in the su�ciency direction we

required that nk � n, but clearly it su�ces to choose nk = n. In other words

a synthesis exists if and only if one exists with state dimension nK = n.

What if we want controllers of order nK less than n? Then clearly from

the above proof we have the following characterization.

Corollary 7.10. A synthesis of order nk exists for the H1 problem, if and

only if there exist symmetric matrices X > 0 and Y > 0 satisfying (a), (b),
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and (c) in Theorem 7.9 plus the additional constraint

rank

�
X I

I Y

�
� n+ nK :

Unfortunately this constraint is not convex when nK < n, so this

says that in general the reduced order H1 problem is computationally

much harder than the full order problem. Nevertheless, the above explicit

condition can be exploited in certain situations.

7.3 Controller reconstruction

The results of the last section provide us with an explicit way to determine

whether a synthesis exists which solves the H1 problem. Implicit in our

development is a method to construct controllers when the conditions of

Theorem 7.9 are met. We now outline this procedure, which simply retraces

our steps so far.

Suppose X and Y have been found satisfying Theorem 7.9 then by

Lemma 7.8 there exists a matrix XL 2 Rn�nK satisfying

XL =

�
X ?

? ?

�
and X�1

L
=

�
Y ?

? ?

�
:

From the proof of the lemma we can construct XL by �nding a matrix

X2 2 Rn�nK such that X � Y �1 = X2X
�
2 . Then

XL =

�
X X�

2

X2 I

�
has the properties desired above. As seen before, the order nK need be no

larger than n, and in general can be chosen to be the rank of X � Y �1.
Next by Lemma 7.2 we know that there exists a solution to

HXL
+Q�J�PXL

+ P �
XL
JQ < 0 ;

and that any such solution J provides the state space realization for a

feasible controller K. The solution of this LMI can be accomplished using

standard techniques, and there is clearly an open set of solutions J .

7.4 Exercises

1. Prove Lemma 7.1.
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2. Generalization of the KYP Lemma. Let A be a Hurwitz matrix, and

let 	 =

�
Q S

S� R

�
be a symmetric matrix with R > 0. We de�ne

 ̂(j!) =

�
(j!I �A)�1B

I

��
	

�
(j!I �A)�1B

I

�
Show that the following are equivalent:

(i)  ̂(j!) � � > 0 for all ! 2 R.

(ii) The Hamiltonian matrix

H =

�
A�BR�1S� �BR�1B�

�(Q�BR�1S�) �(A�BR�1S�)�

�
is in the domain of the Riccati operator.

(iii) The LMI �
A�X +XA XB

B�X 0

�
+	 > 0

admits a symmetric solution X .

(iv) There exists a quadratic storage function V (x) = x�Px such the
dissipation inequality

_V �
�
x(t)

u(t)

�� �
Q S

S� R� �I

� �
x(t)

u(t)

�
is satis�ed over any solutions to the equation _x = Ax+Bu.

Hint: The method of proof from x7.1.1 can be replicated here.

3. Spectral Factorization. This exercise is a continuation of the previous

one on the KYP Lemma. We take the same de�nitions for  , H , etc.,

and assume the above equivalent conditions are satis�ed. Now set

M̂(s) =

�
A B

R�
1
2 (S� +B�X) R

1
2

�
;

where X = Ric(H). Show that M̂(s) 2 RH1, M̂(s)�1 2 RH1, and
the factorization

 ̂(j!) = M̂(j!)�M̂(j!)

holds for every ! 2 R.

4. Mixed H2=H1 control.

(a) We are given a stable system with the inputs partitioned in two

channels w1, w2 and a common output z:

P̂ =
�
P̂1 P̂2

�
=

�
A B1 B2

C D 0

�
:
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Suppose there exists X > 0 satisfying24A�X +XA XB1 C�

B�1X �I D�

C D �I

35 < 0; (7.17)

Tr(B�2XB2) < 2: (7.18)

Show that P satis�es the speci�cations kP̂1kH1 < 1; kP̂2kH2
<

. Is the converse true?

(b) We now wish to use part (a) for state-feedback synthesis. In

other words, given an open loop system

_x = A0x+B1w1 +B2w2 +B0u;

z = C0x+Dw1 +D0u;

we want to �nd a state feedback u = Fx such that the closed

loop satis�es (7.17)-(7.18). Substitute the closed loop matrices

into (7.17); does this give an LMI problem for synthesis?

(c) Now modify (7.17) to an LMI in the variable X�1, and show

how to replace (7.18) by two convex conditions in X�1 and an

appropriately chosen slack variable Z.

(d) Use part (c) to obtain a convex method for mixed H1/H2 state

feedback synthesis.

5. As a special case of reduced order H1 synthesis, prove Theorem 4.20

on model reduction.

6. Prove Theorem 5.8 involving stabilization. Hint: Reproduce the steps

of the H1 synthesis proof, using a Lyapunov inequality in place of

the KYP Lemma.

7. Connections to Riccati solutions for the H1 problem. Let

Ĝ(s) =

24 A B1 B2

C1 0 D12

C2 D21 0

35
satisfy the normalization conditions

D�12
�
C1 D12

�
=
�
0 I

�
and D21

�
B�1 D�21

�
=
�
0 I

�
:

Notice that these (andD11 = 0) are part of the conditions we imposed

in our solution to the H2-optimal control in the previous chapter.
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(a) Show that the H1 synthesis is equivalent to the feasibility of

the LMIs X > 0, Y > 0 and�
A�X +XA+ C�1C1 � C�2C2 XB1

B�1X �I

�
< 0;�

AY + Y A� +B1B
�
1 �B2B

�
2 Y C�1

C1Y �I

�
< 0;�

X I

I Y

�
� 0:

(b) Now denote Q = Y �1, P = X�1. Convert the above conditions
to the following:

A�P + PA+ C�1C1 + P (B1B
�
1 �B2B

�
2)P < 0;

AQ+QA� +B1B
�
1 +Q(C�1C1 � C�2C2)Q < 0;

�(PQ) � 1

These are two Riccati inequalities plus a spectral radius cou-

pling condition. Formally analogous conditions involving the

corresponding Riccati equations can be obtained when the

plant satis�es some additional technical assumptions. For details

consult the references.

Notes and references

The H1 control problem was formulated in [152], and was motivated by

the necessity for a control framework that could systematically incorporate

errors in the plant model. At the time this had been a goal of control

research for a number of years, and H2 control seemed poorly suited for

this task [22]. The main observation of [152] was that these requirements

could be met by working in a Banach algebra such asH1, but notH2 which

lacks this structure. We will revisit this question in subsequent chapters.

The formulation of the H1 problem precipitated an enormous research

e�ort into its solution. The initial activity was based on the parametriza-

tion of stabilizing controllers discussed in Chapter 5, which reduced the

problem to approximation in analytic function space. This problem was

solved in the multivariable case by a combination of function theory and

state space methods, notably Riccati equations. For an extensive account

of this approach to the H1 problem, see the book [41]. Recent extensions

to in�nite dimensional systems can be found in [38].

Ultimately, these e�orts led to a solution to the H1 problem in terms

of two Riccati equations and based entirely on state-space methods [24];

see the books [50, 155] for an extensive presentation of this approach and

historical references. This solution has close ties to the theory of di�er-

ential games (see [6]). For extensions of the Riccati equation method to

distributed parameter systems, see [132].
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One of the drawbacks of the Riccati equation theory was that it required

unnecessary rank conditions on the plant; the ensuing research in removing

such restrictions [16, 126] led to the use of Riccati inequalities [117, 119]

which pointed in the direction of LMIs. Complete LMI solutions to the

problem with no unnecessary system requirements appeared in [42, 89];

these papers form the basis for this chapter, particularly the presentation

in [42].

The LMI solution has, however, other advantages beyond this regular-

ity question. In the �rst place, a family of controllers is parameterized,

in contrast to the Riccati solution which over-emphasizes the so-called

\central" solution. This increased exibility can be exploited to impose

other desirable requirements on the closed loop; for a recent survey of these

multi-objective problems see [120].

Also, the LMI solution has led to powerful generalizations: in [18] a

more general version is solved where spatial constraints can be speci�ed;

[31] solves the time varying and periodic problems; �nally, the extension

of this solution to multi-dimensional systems forms the basis of Linear

Parameter-Varying control, a powerful method for gain-scheduling design

[89].



This is page 227

Printer: Opaque this

8

Uncertain Systems

In the last three chapters we have developed synthesis techniques for feed-

back systems where the plant model was completely speci�ed, in the sense

that given any input there is a uniquely determined output. Also our plant

models were linear, time invariant and �nite dimensional. We now return

our focus to analysis, but move beyond our previous restriction of having

complete system knowledge to the consideration of uncertain systems.

In a narrow sense, uncertainty arises when some aspect of the system

model is not completely known at the time of analysis and design. The

typical example here is the value of a parameter which may vary according

to operating conditions. As discussed in the introduction to this course, we

will use the term uncertainty in a broader sense to include also the result

of deliberate under-modeling, when this occurs to avoid very detailed and

complex models.

To illustrate this latter point, let us briey and informally examine some

of the issues involved with modeling a complex system. In the �gure we

have a conceptual illustration of a complex input-output system.

As depicted it has an input �w and an output �z. A complete description of

such a system is given by the set of input-output pairs

P = f( �w; �z) : �z is the output given input �wg:

Here the complex system can be nonlinear or in�nite dimensional, but is

assumed to be deterministic.

Now suppose we attempt to model this complex system with a mapping

G. Then similar to the complex system, we can describe this model by an
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Complex system �w�z

input-output set

RG = f(w; z) : z = Gwg :
Our intuitive notion of a good model is, given an input-output pair ( �w; �z)

in the set of system behaviors P and the corresponding model pair ( �w; z) 2
RG that

z is a good approximation to �z :

If however G is much simpler than the system it is intended to model, this

is clearly an unreasonable expectation for all possible inputs �w.

G wz

Now consider instead a set R of input-output pairs generated by a family

G which is a speci�ed set of input-output maps.

R = f(w; z) : there exists G 2 G such that z = Gwg: (8.1)

In words this set is just the union of the sets RG when G ranges over

the set G. Such a set R is a relation with respect to input-output pairs,

but may no longer specify a function; namely there could be many pairs

(w; z0); (w; z1); : : : ; (w; zn), with distinct zk, associated with a given input

w. Notice this can never be the case in set RG. When would R provide a

good model for the system given by P? Descriptively, the basic requirement
would be that

most elements of P are close to some element of R.
In this way R would approximately contain or cover the complex model

(strict covering P � R is also desirable, but may be more di�cult to

ascertain). Now the key observation is that this requirement can indeed be

satis�ed even when the description of G is much simpler than the complex
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system; for example each G can be a linear mapping, yet the system to be

modeled could be signi�cantly nonlinear.

Example:

Consider the static input-output system speci�ed by the set

P = f(w; z) : z(t) = f(w(t)), for each tg ;
where f is a highly complex nonlinear function, but is known to satisfy the

so-called sector bound condition

jf(w(t) )j � jw(t)j; for each t:

Suppose we focus on signals in L2. Then clearly the relation

R = f(w; z) : kzk2 � kwk2g
will satisfy R � P and thus cover the complex behavior. Now it is easily

shown (see Lemma 8.4 below) that R has the form (8.1) where G is the

unit ball of linear operators on L2. �

What is the price paid for this containment procedure? Mainly, that the

relation R often describes a much larger behavior than P ; in particular it

is usually not true that \most elements of R are close to some element of

P". In the above example, pairs (w; z) 2 R may for instance have the two

signals supported in disjoint time intervals, a situation which is not present

in P .
In other words, this modeling technique decreases complexity by intro-

ducing uncertainty into the system description. This kind of tradeo� is

implicitly present in most of engineering modeling. What is special about

the robust control theory that follows is that the uncertainty is made ex-

plicit in terms of a set of input-output models G. For the remainder of

the chapter we study an important way to describe such sets, and pro-

vide methods to analyze such descriptions. In the next chapter we will

explicitly relate our current work to robust stability and robust perfor-

mance of complex feedback systems, and will discuss synthesis under these

conditions.

8.1 Uncertainty modeling and well-connectedness

In this section we introduce precisely the type of uncertain systems we will

be studying. The idea is to parametrize the set G from the above discussion

using perturbations. Then by varying the nature of these perturbations we

can alter the characteristics of the set G and ultimately the set of input-

output pairs R. We will seldom need to directly refer to the sets G and

R, however it is important to keep the above motivation for our system
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models in mind as they will help us to chart our course. The basic setup

we now use is shown in Figure 8.1.

p q

�

M

z w

Figure 8.1. Uncertain system model

HereM and � are bounded operators on L2[0; 1), and w the system input

is in L2[0; 1). The picture represents the map w 7! z which is formally

de�ned by the equations

q =�p�
p

z

�
=

�
M11 M12

M21 M22

� �
q

w

�
;

whereM is compatibly partitioned with respect to the inputs and outputs.

Our goal will be to understand the possible maps w 7! z when all that is

known about � is that it resides in a pre-speci�ed subset� of the bounded

linear operators on L2. We will consider two fundamental types of sets in

this chapter which are speci�ed by spatial structure, norm bounds and their

dynamical characteristics.

Before embarking on this speci�c investigation let us quickly look at the

algebraic form of maps that can be obtained using the above arrangement.

Observe that if (I �M11�) is nonsingular then

w 7! z =M22 +M21�(I �M11�)
�1M12 =: �S(M;�);

where this expression de�nes the notation �S(M;�), the upper star product.

Recall that we de�ned the lower star product S(�; �) earlier when studying

synthesis.

Examples:

We now present two examples of the most common types of uncertain

models. Suppose that

M =

�
0 I

I G

�
:
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Then we see

�S(M;�) = G+� :

That is the sets of operators generated by �S(M;�), when � 2� is simply

that of an additive perturbation to an operator G.

Similarly let

M =

�
0 G

I G

�
and get that

�S(M;�) = G+�G = (I +�)G;

which is a multiplicative perturbation to the operator G.

�

Two examples have been presented above, which show that the setup

of Figure 8.1 can be used to capture two simple sets. It turns out that

this arrangement has a surprisingly rich number of possibilities, which are

prescribed by choosing the form of the operator M and the uncertainty or

perturbation set �. One reason for this is that this modeling technique is

ideally suited to handle system interconnection (e.g. cascade or feedback),

as discussed in more detail below. The exercises at the end of the chapter

will also highlight some of these possibilities. First, though, we lay the basis

for a rigorous treatment of these representations by means of the following

de�nition.

De�nition 8.1. Given an operator M and a set �, the uncertain system

in Figure 8.1 is robustly well-connected if

I �M11� is nonsingular for all � 2� :

We will also use the terminology (M11;�) is robustly well-connected to

refer to this property.

When the uncertain system is robust well-connected, holds we are assured

that the map w 7! z of Figure 8.1 is bounded and given by �S(M;�), for

every � 2 �. At �rst sight, we may get the impression that robust well-

connectedness is just a technicality. It turns out however, that it is the

central question for robustness analysis, and many fundamental system

properties reduce to robust well-connectedness; we will, in fact, dedicate

this chapter to answering this question in a variety of cases. Subsequently,

in Chapter 9 these techniques will be applied to some important problems

of robust feedback design.

A simple �rst case of evaluation of robust well-connectedness is when the

set� is the unit ball in operator space. In this case of so-called unstructured

uncertainty, the analysis can be reduced to a small-gain property. The term
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unstructured uncertainty is used because we are not imposing any structure

on the perturbations considered except that they are contractive.

Theorem 8.2. Let Q be an operator and � = f� 2 L(L2) : k�k � 1g.
Then I �Q� is nonsingular for all � 2� if and only if

kQk < 1:

Proof . The \if" direction, observe that for any � 2�, we have the norm

inequalities

kQ�k � kQkk�k < 1:

Then it follows from the small-gain theorem in Chapter 3 that I �Q� is

invertible.

For the \only if" direction, we must show that if kQk � 1 then there

exists � 2 � with I �M11� singular. From our work in Chapter 3, we

obtain the spectral radius condition

�(QQ�) = kQk2 = kQ�k2 � 1;

where QQ� has only nonnegative spectrum, so I� � QQ� is singular with
� = kQk2.
Dividing by � we see that I � QQ���1 is singular, and thus we set

� = ��1Q�, which is contractive since k�k = kQ�k�1 � 1. �

The preceding result reduces the analysis of whether the system of Figure

8.1 is robust well-connected under unstructured uncertainty, to evaluating

the norm of M11. If for instance M11 is a �nite dimensional, causal LTI

operator, a computational evaluation follows from the tools of Chapter 7.

We remark that there is nothing special about perturbations of size one.

If the uncertainty set were speci�ed as f� 2 L(L2) : k�k � �g, the cor-
responding test would be kM11k < 1=�; now, since a normalizing constant

can always be included in the description of M , we will assume from now

on that this normalization has already been performed and our uncertainty

balls are of unit size.

Therefore the analysis of well-connectedness is simple for unstructured

uncertainty. There are, however, usually important reasons to impose ad-

ditional structure on the perturbation set�, in addition to a norm bound.

We explain two such reasons here, the �rst is illustrated by the following

example.

Example:

The �gure depicts the cascade interconnection of two uncertain systems

of our standard form; i.e., a composition of the uncertain operators. It is

a routine exercise, left for the reader, to show that the interconnection is

equivalent to a system of the form of Figure 8.1, for an appropriately chosen
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�

-

�

�

-

�

�

p1 q1 p2 q2

�2�1

N H

Figure 8.2. Cascade of uncertain systems

M and

p =

�
p1
p2

�
; q =

�
q1
q2

�
; � =

�
�1 0

0 �2

�
:

Therefore we �nd that the uncertainty set � for the composite system

will have, by construction, a block diagonal structure. �

Thus we see that system interconnection generates structure; while com-

ponents can be modeled by unstructured balls as described in previous

examples, a spatially structured uncertainty set can be used to reect the

complexity of their interconnection. We remark that many other forms of

interconnection (e.g. feedback) can also be accommodated in this setting.

We now move to a second source of uncertainty structure; this arises

when in addition to robust well-connectedness, one wishes to study the

norm of the resulting operator set S(M;�). That is assuming (M11; �) is

well-connected, does

k �S(M;�)k < 1

hold for all � 2�. We have the following result which states that the latter

contractiveness problem can be recast as a well-connectedness question.

Proposition 8.3. De�ne the perturbation set

�p =

�
� =

�
�u 0

0 �p

�
: �u 2�; and �p 2 L(L2) with k�pk � 1

�
:

Then (M11;�) is robustly well-connected and

k �S(M;�u)k < 1; for all �u 2�,

if and only if I �M� is invertible for all � 2�p.

Proof . We �rst demonstrate \only if". For any

� =

�
�u 0

0 �p

�
2�p;
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we have

I �M� =

�
I �M11�u �M12�p

�M21�u I �M22�p

�
:

Since by de�nition of �p we know �u 2�, it follows by assumption that

(I �M11�u)
�1 exists. It is easily veri�ed that�

I �M11�u �M12�p

�M21�u I �M22�p

�
=

�
I 0

�M21�u(I �M11�u)
�1 I

�
� (8.2)�

I �M11�u �M12�p

0 I � �S(M;�u)�p

�
Since the �rst operator on the right of the equality is nonsingular, (I �
M�)�1 exists if I� �S(M;�u)�p is nonsingular. This follows from Theorem

8.2, setting Q = �S(M;�u) which by assumption is contractive.

The \if" direction: suppose �u 2� then clearly

� :=

�
�u 0

0 0

�
2�p

and

I �M� =

�
I �M11�u 0

�M21�u I

�
is nonsingular by assumption. Therefore (I�M11�u)

�1 exists for all �u 2
�.

Now looking at (8.2) for any �xed �u 2�, and all �p satisfying k�pk �
1, we have that

I � �S(M;�u)�p is nonsingular :

Once again, Theorem 8.2 implies that we must have k �S(M;�u)k < 1 for

all �u 2�. �

Thus we have identi�ed two reasons for the introduction of spatial,

block-diagonal structure to our perturbation set �. The �rst is that if

a system is formed by the interconnection of subsystems, then this struc-

ture arises immediately due to perturbations which may be present in the

subsystems. Our second motivation is because this will enable us to con-

sider the performance associated with the closed-loop. The next section

is devoted to studying the implications of this structure in the analysis

of well-connectedness. Later on in this chapter we will explore additional

structural constraints which can be imposed on our uncertainty set.

8.2 Arbitrary block-structured uncertainty

This section is devoted to developing an analysis test for robust well-

connectedness when the only restriction imposed on the uncertainty is that
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it have a block-diagonal spatial structure. In particular, the main question

is whether one can generalize the small gain test which was valid under

unstructured perturbations.

We start by de�ning the block-diagonal uncertainty set �a, which is a

spatially structured subset of the unit ball in L(Lm2 ).
�a = fdiag(�1; : : : ;�d) : �k 2 L(Lmk

2 ) and k�kk � 1 holds.g;
where the spatial dimensions mk are �xed and satisfy m = m1 + � � �+md.

The above notation means that every perturbation � in this set �a is of

the form

� =

266664
�1 0 � � � 0

0
. . .

. . .
...

...
. . .

. . . 0

0 � � � 0 �d

377775 ;
where each �k can be any contractive linear operator on the space Lmk

2 .

This set constrains the spatial structure of its members, but allows any

other dynamical characteristics.

In line with our discussion at the beginning of the chapter, it is useful to

study the relation formed by the input-output pairs which are parametrized

by �a. Referring to Figure 8.1, consider the set

Ra = f(p; q) 2 L2 : kpkk � kqkk; where k = 1; : : : ; dg
Here pk, qk denote the parts of the vectors p, q which correspond to the

spatial structure �a. We claim that

Ra is equal to the set f(p; q) 2 L2 : q = �p; for some � 2�ag; (8.3)

this follows from the following lemma applied to each block.

Lemma 8.4. Suppose p and q are elements of L2[0; 1). The following are

equivalent.

(i) kpk � kqk.
(ii) There exists an operator � 2 L(L2) with k�k � 1, such that �p = q.

Proof . It is clear that (ii) implies (i), so we focus on the other direction.

Assume that p is nonzero, otherwise the result is immediate. De�ne � by

�u := q
hp; ui
kpk22

:

Now �p = q as required, and the norm bound on � follows by an

application of the Cauchy-Schwartz inequality. �

This Lemma completes the example in the introduction of this chapter,

where a relation in terms of a single norm constraint was used to cover
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a complex nonlinearity. Here the relation Ra allows us to impose a �nite

number of such constraints.

A word on terminology: because the operators in �a are linear and in

general not time invariant, this structure is sometimes called linear time-

varying (LTV) uncertainty. We have used the more general term arbitrary

block-structured uncertainty since

(i) From a modeling perspective, this uncertainty set is often not mo-

tivated by time variation. As explained above, we could well be

modeling a nonlinearity;

(ii) From a mathematical perspective, the relation Ra is indeed time

invariant; that is if (p; q) 2 Ra, then (S�p; S�q) 2 Ra, where S� is

the shift on L2[0; 1). While a linear parametrization of Ra involves

time-varying operators, we will see below that the time invariance of

Ra is indeed the central property required for our analysis.

We now proceed to the study of robust well-connectedness over the set

�a. Throughout we will assume that the nominal system M is an LTI

operator. Our objective is to study under what conditions (M11; �a) is

robustly well-connected. Recall that by this we mean

I �M11� is invertible, for all � 2�a:

For convenience, we will drop the subindex from M11 in the following

discussion and simply write M .

8.2.1 A scaled small-gain test and its su�ciency

We begin with the simple observation that since �a is subset of the unit

ball of L(L2), then clearly the small gain condition

kMk < 1

for unstructured uncertainty must be su�cient for robust well-connectedness

over�a. However the above norm condition is in general conservative since

the block-diagonal restriction did not come into play. In other words the

condition kMk � 1 does not necessarily imply that I �M� is singular for

some perturbation in �a.

A basic tool to reduce the conservatism of the contractiveness condition

above is to introduce operators which commute with the perturbations. We

de�ne the commutant of the uncertainty set �a by

� = f� 2 L(L2) : � is invertible and �� = �� for all � 2�ag:
Notice that the inverse ��1 of any � 2 � automatically has the same

commuting property, and we can write the identity

�(I �M�)��1 = I � �M��1�; for all � 2�a:
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Thus I�M� is singular if and only if I��M��1� is singular. This means

that if we can �nd an element � of the commutant satisfying

k�M��1k < 1;

then we can guarantee that (M; �a) is robustly well-connected simply

by invoking the small gain condition. This motivates us to describe these

commuting operators.

You will show in the exercises at the end of the chapter, that � 2 � if

and only if � is of the form

� =

266664
1I 0 � � � 0

0
. . .

. . .
...

. . .
. . . 0

0 � � � 0 dI

377775 ;
for some constant nonzero scalars k in C . Clearly since such an operator

� is memoryless it can also be thought of as a matrix.

With this description we recapitulate our previous discussion as follows.

Proposition 8.5. Suppose M is a bounded operator. If there exists � in

� such that

k�M��1k < 1;

then (M;�a) is robustly well-connected.

It will also be convenient to consider the set of positive matrices of the

same spatial structure; we de�ne the set

P� = f� 2 Rm�m : � = diag(1Im1
; : : : ; dImd

); where the scalars k > 0g:
(8.4)

Observe that P� is a convex cone of matrices, as de�ned in Chapter 1.

Also notice that:

� If � 2 �, then ��� 2 P�.
� � is in P� if and only if its square root �

1
2 is in P�.

These properties allow us to claim that in the above proposition it su�ces

to restrict attention to the positive elements of the commutant. We now

state this equivalence more explicitly, together with two other restatement

of the above test.

Proposition 8.6. Suppose M is a time invariant bounded operator, with

transfer function M̂(s) = C(Is � A)�1B + D, and A is Hurwitz of order

n. Then the following are equivalent:

(i) There exists � in � such that k�M��1k < 1;

(ii) There exists � in P� such that k� 1
2M��

1
2 k < 1;
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(iii) There exists � in P� such that

M��M � � < 0; (8.5)

(iv) There exists � in P� and a symmetric n�n matrix X > 0 such that�
C�

D�

�
�
�
C D

�
+

�
A�X +XA XB

B�X ��

�
< 0 : (8.6)

Here we have added the additional assumption that M̂ is in RH1 for

condition (iv), however the �rst three conditions are equivalent for any

operatorM . The reformulation given in (iii), expresses our norm condition

in terms of a convex operator inequality; we recall that (8.5) means the

operator is negative de�nite, that is there exists � > 0 such that

hv; (M��M � �)vi � ��kvk2 for all v 2 L2:

The second reformulation says that (i) can be reduced to an equivalent

LMI feasibility condition.

Proof . We �rst show that (i) implies (iii). For this purpose we write

k�M��1vk2 � (1� �)kvk2

for any v 2 L2 and some � > 0; equivalently, setting u 2 ��1v we �nd that

k�Muk2 � (1� �)k�uk2

for any u 2 L2. Now by rewriting the above inequality we obtain

hv; (M����M � ���)vi � ��k�uk2 � � �

k��1k2 kuk
2;

which implies (iii) since ��� 2 P�.
The above argument can be essentially reversed to show that (iii) implies

(ii); also, since � 2 P� implies �
1
2 2 P� � �, it is clear that (ii) implies

(i).

This shows the equivalence of the �rst three conditions, with no reference

to �nite dimensionality or time invariance of the operator M . We now

impose this restriction and show that (ii) implies (iv). Since M is LTI and

�nite dimensional, and � is constant, the norm condition in (i) amounts to

the H1 norm condition

k� 1
2 M̂��

1
2 k1 = k� 1

2C(Is�A)�1B��
1
2 + �

1
2D��

1
2 k1 < 1:

Since A is Hurwitz, we can apply the KYP lemma and conclude that there

exists a symmetric matrix X > 0 such that�
C�

��
1
2D�

�
�
�
C D��

1
2

�
+

�
A�X +XA XB��

1
2

��
1
2B�X �I

�
< 0:
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Now left and right multiply this inequality by the symmetric matrix

diag(I; �
1
2 ) to get�

C�

D�

�
�
�
C D

�
+

�
A�X +XA XB

B�X ��

�
< 0:

This is precisely the LMI in (8.6). Clearly the above steps can be reversed

to establish that (iv) implies (ii). �

The preceding results provide a tractable means to establish robust well-

connectedness over �a. Indeed the existence of an appropriate scaling

matrix � 2 P� can be determined from (8.6) by LMI computation. Since

the identity matrix is a member of P� there always exists an � in P� such

that k� 1
2M��

1
2 k � kMk. Therefore this scaled small-gain test provides a

less conservative test for robust well-connectedness than the previous condi-

tion kMk < 1. Our next task is to determine whether this scaling procedure

has eliminated all conservatism from the small-gain test. The main result

of this section is that this is indeed the case: the scaled small-gain condition

is necessary as well as su�cient.

8.2.2 Necessity of the scaled small-gain test

In this section we will concentrate our e�orts on showing that the scaled

small-gain condition must hold if (M; �a) is a well-connected uncertain

system. In order to achieve this goal we will employ some of the ideas and

results from convex analysis introduced in x1.2.2. Our strategy will be to

translate our problem to one in terms of the separation of two speci�c sets

in Rd . We will be able to show that well-connectedness implies that these

sets are strictly separated, and that the scaled small-gain condition implies

there exists a hyperplane that strictly separates these sets. We will then

obtain our necessity result by showing that the strict separation of the

sets implies the stronger condition that there exists a strictly separating

hyperplane between them.

It will be advantageous to again look at the relation Ra introduced in

the preliminary discussion of this section and de�ned in (8.3), rather than

its parametrization by �a. Also we will wish to describe our relation Ra

in terms of quadratic inequalities of the form kpkk2 � kqkk2 � 0. Out of

convenience we rewrite these as

kEkpk2 � kEkqk2 � 0; k = 1 : : : d; (8.7)

where the mk �m matrix

Ek =
�
0 � � � 0 I 0 � � � 0

�
selects the k-th block of the corresponding vector. The spatial dimensions

of Ek are such that any element � = diag(1I; : : : dI) in the set P� can
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be written as

� = 1E
�
1E1 + � � � dE�dEd: (8.8)

Inequalities such as the one in (8.7) are called integral quadratic constraints

(IQCs); the name derives from the fact that they are quadratic in p and

q, and involve the energy integral. We will have more to say about general

IQCs in Chapter 10.

We wish to study the interconnection of Ra to the nominal system M ;

for this purpose, we impose the equation p =Mq on the expression (8.7)

and de�ne the quadratic form �k : L2 ! R by

�k(q) := kEkMqk2 � kEkqk2 = hq; (M�E�
k
EkM �E�

k
Ek)qi (8.9)

With this new notation, we make the following observation.

Proposition 8.7. If (M;�a) is robustly well-connected, then there cannot

exist a nonzero q 2 L2 such that the following inequalities hold:

�k(q) � 0; for each k = 1; : : : ; d: (8.10)

This proposition follows from the reasoning: if such a q existed, we would be

assured that (Mq; q) 2 Ra. Thus by the earlier discussion, see Lemma 8.4,

there would exist a � 2�a such that

�Mq = q;

implying that the operator (I � �M) would be singular. And therefore,

invoking Lemma 3.16, the operator I �M� would also be singular. Thus

we have related robust well-connectedness to the infeasibility of the set of

inequalities in (8.10).

We now wish to relate the quadratic forms �k to the scaled small-gain

condition. In fact this connection follows readily from version (ii) in Propo-

sition 8.6 by expressing the elements of P� as in (8.8), which leads to the

identity

hq; (M��M � �)qi =
dX

k=1

khq; (M�E�
k
EkM �E�

k
Ek)qi =

dX
k=1

k�k(q):

The following result follows immediately by considering condition (ii) of

Proposition 8.6; the reader can furnish a proof.

Proposition 8.8. The equivalent conditions in Proposition 8.6 hold if and

only if there exist scalars k > 0 and � > 0 such that

1�1(q) + � � �+ d�d(q) � ��kqk2; for all q 2 L2: (8.11)

Furthermore, if such a solution exists for (8.11) then there does not exist

a nonzero q in L2 satisfying (8.10).

We have thus related both robust well-connectedness and the scaled

small-gain test, to two di�erent conditions involving the quadratic forms �k .
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The former condition states the infeasibility of the set of constraints (8.10);

the latter condition is expressed as a single quadratic condition in (8.11)

with multipliers k, and implies the former. In the �eld of optimization a

step of this sort, using multipliers to handle a set of quadratic constraints,

is sometimes called the S-procedure. The S-procedure is termed lossless

when there is no conservatism involved, namely when the conditions are

equivalent. In what follows we will show this is the case here for us.

To demonstrate this we �rst express our �ndings in geometric terms so

that we can bring convex analysis to bear on the problem. To this end

introduce the following subsets of Rd :

� = f(r1; : : : ; rd) 2 Rd : rk � 0; for each k = 1; : : : ; dg;
r = f(�1(q); : : : ; �d(q)) 2 Rd : q 2 L2; with kqk2 = 1g:

Here � is the positive orthant in Rd , and r describes the range of the

quadratic forms �k as q varies in the unit sphere of L2. For brevity we will

write �(q) := (�1(q); : : : ; �d(q)) and  = (1; : : : d). Therefore with the

standard inner product in Rd , we have

h; �(q)i = 1�1(q) + � � �+ d�d(q):

Now we are ready to interpret our conditions geometrically. From the

discussion and Proposition 8.7 we see that robust well-connectedness im-

plies that the closed set � and the set r are disjoint, that is �\r = ;. Now
r is a bounded set but it is not necessarily closed. Therefore we cannot

invoke Proposition 1.3 to conclude these sets are strictly separated when

they are disjoint. Nonetheless this turns out to be true.

Proposition 8.9. Suppose that (M;�) is robustly well-connected over

�a. Then the sets � and r are strictly separated, namely

D(�;r) := inf
r2�;y2r

jr � yj > 0:

This result states that not only are the sets � and r disjoint, but they are

separated by a positive distance. Its proof is technically quite involved and

adds little of conceptual signi�cance to our discussion. For this reason the

proof is relegated to Appendix B.

Turning now to the condition in (8.11), we see that it speci�es the

existence of a vector  with positive entries and an � > 0, such that

h; yi � ��; for all y 2 r:
In other words, the set r is constrained to lie strictly inside the negative

half-space de�ned by the hyperplane h; yi = 0. Notice also that since the

entries k of  are positive, the set � will automatically lie in the opposite

half-space. We have the following result.

Proposition 8.10. The conditions of Proposition 8.6 are satis�ed if and

only if there is a hyperplane strictly separating the sets r and �.
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Proof . From the de�nition of a strictly separating hyperplane, we need to

show that the conditions in Proposition 8.6 are equivalent to the existence

of a vector  2 Rd , and scalars � and �, such that

h; yi � � < � � h; ri holds, for all y 2 r; r 2 �: (8.12)

The \only if" direction follows from the above comments and Proposi-

tion 8.8 by choosing � = �� and � = 0.

To establish \if", suppose that (8.12) holds for some , � and �. First

note, from the structure of � that we must have k � 0, for each k; other-

wise we could make the corresponding rk arbitrarily large and violate the

bound � � h; ri. Hence we see that 0 � h; ri, for all r in �; therefore

without loss of generality we set � = 0. Observe this implies that � < 0.

Finally we show there exists an � > 0 such that each of the entries k
can be perturbed to be strictly positive, satisfying a bound of the form

h; yi � �� < 0, for all y 2 r. To see that this is is always possible simply
recall that each k is non negative, � < 0 andr is bounded. This establishes

inequality (8.11) and completes our proof by invoking Proposition 8.8. �

Figure 8.3 contains an illustration of the preceding conditions for the case

where d = 2. In part (a) of the �gure we see the pair of sets r and � where

they have a positive distance between them, as implied by robust well-

connectedness according to Proposition 8.9. However the depiction in (b)

of Figure 8.3 imposes a strict hyperplane separation between the two sets,

which is equivalent to the scaled small-gain condition by the proposition

just proved.

�

r r



(b)(a)

Figure 8.3. (a) D(�;r) > 0; (b) �, r separated by a hyperplane.

Consequently, if we wish to show that the conditions of Proposition 8.6

are necessary for robust well-connectedness, we need to prove that strict

separation of the sets r and � automatically implies the existence of a

strictly separating hyperplane. This leads us to think of convex separation

theory, reviewed in x1.2.2. The closed positive orthant � is clearly a convex

set. As for the setr, we have the following result. Its proof will rely strongly
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on the time invariance of the operatorM since it implies the forms �k also

enjoy such a property.

Lemma 8.11. The closure �r is convex.

Proof . We introduce the notation

Tk :=M�E�
k
EkM �E�

k
Ek :

For each k = 1; : : : ; d, the operator Tk is self adjoint and time invariant;

also from (8.9) we know that �k(q) = hTkq; qi.
Choose two elements y = �(q) and ~y = �(~q) from the setr. By de�nition,

kqk = k~qk = 1. We wish to demonstrate any point on the line segment

that joins them is an element of �r. That is for any � 2 [0; 1] we have

�y + (1� �)~y 2 �r. Given such an � let

q� :=
p
� q +

p
1� �S� ~q;

where S� is the usual time shift operator.

Our �rst goal is to examine the behavior of �(q� ) as � tends to in�nity.

It is convenient to do this by considering each component �k(q� ). So for

any given k we compute

�k(q� ) = hTkq� ; q� i
= �hTkq; qi+ (1� �)hTkS� ~q; S� ~qi+ 2

p
�(1� �)RehTkq; S� ~qi:

(8.13)

We �rst observe, from the time invariance of Tk, that the second term on

the right hand side satis�es

hTkS� ~q; S� ~qi = hS�Tk~q; S� ~qi = hTk~q; ~qi = �k(~q):

We this observation we can rewrite (8.13) as

�k(q� ) = ��k(q) + (1� �)�k(~q) + 2
p
�(1� �)RehTkq; S� ~qi:

Now we let � !1. Clearly the inner product on the right converges to zero

since the �rst element is �xed, and the second is being shifted to in�nity.

Thus we have

lim
�!1

�k(q� ) = ��k(q) + (1� �)�k(~q):

Collect all components, for k = 1; : : : ; d, to conclude that

lim
�!1

�(q� ) = �y + (1� �)~y:

Thus we have succeeded in obtaining the convex combination �y + (1�
�)~y as a limit of vectors in the range of �; however we have not established

that the q� have unit norm, as required in the de�nition of r; to address

this, note that

lim
�!1

kq�k2 = �kqk2 + (1� �)k~qk2 = 1:
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This follows by the same argument as the above, replacing Tk by the iden-

tity operator. Thus the q� have asymptotically unit norm, which implies

that

lim
�!1

�

�
q�

kq�k

�
= �y + (1� �)~y:

Now by de�nition the elements on the left are in r, for every � , so we

conclude that

�y + (1� �)~y 2 �r:

Finally, by continuity the same will hold if we choose the original y and ~y

from �r rather than r; this establishes convexity. �

We can now assemble all the results of this section to show that the

scaled small-gain condition is indeed necessary for well-connectedness of

(M; �a). This result is a direct consequence of the following.

� Suppose the uncertain system (M;�a) is robustly well-connected,

then by Proposition 8.9 we conclude that sets r and � are strictly

separated.

� Since r and � are strictly separated, so must be their closures �r and

�; now the positive orthant � is convex, an so is �r by Lemma 8.11;

therefore the conditions of Theorem 1.5 are satis�ed, and there exists

a strictly separating hyperplane, i.e. there exists  2 Rd such that

(8.12) is satis�ed.

� Now by Proposition 8.10, any and all of the equivalent scaled small-

gain conditions of Proposition 8.6 must hold.

This argument clearly shows that well-connectedness implies the scaled

small-gain condition, and we already know the converse statement is true

from Proposition 8.5. Thus we have obtained a necessary and su�cient

condition for robustness analysis over�a, which is summarized now as the

main result of this section.

Theorem 8.12. Suppose M is a time invariant bounded operator on

L2[0; 1). The uncertain system (M;�a) is robustly well-connected if and

only if

inf
�2�

k�M��1k < 1: (8.14)

The theorem states that if the operator M is time-invariant, then the in�-

mum condition is an exact test for well-connectedness. The importance of

this result is immediately apparent from Proposition 8.6. Part (iii) shows

that the above test is equivalent to a convex condition over the positive

scaling set P�. Also if M is a state space system, then well-connectedness
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of (M; �a) reduces to an LMI feasibility problem by part (iv) of the propo-

sition. It is the fact that this condition can be checked with surety which

makes the above theorem very attractive.

Having provided computable conditions for well-connectedness with

respect to the uncertainty set�a of spatially structured, but otherwise ar-

bitrary perturbations, we are now ready to move on to consider uncertainty

sets which are further constrained in their dynamical characteristics.

8.3 The Structured Singular Value

After having studied some robustness problems at some level of detail in

the preceding section, we will now extend some of the lessons learned to ro-

bustness analysis of more general uncertainty models. In x8.4 these general
tools will be applied to another special case of robust well-connectedness,

structured LTI uncertainty.

So far our uncertain systems have been characterized by a nominal com-

ponent M , which we have taken to be LTI, and an uncertain component.

For the latter, we have alternated between a description in terms of a re-

lation R between signals, and a parameterization of the relation by a set

of operators �. While these are interchangeable notions for the analysis

we have performed, some aspects of the problem are best illuminated with

each version.

Speci�cally, we �rst studied the unstructured uncertainty set where

� was just the unit ball of operators; in this case the analysis of well-

connectedness reduced to small-gain condition on M . We also studied

spatially structured uncertainty, where the analysis of well-connectedness

reduced to a scaled small-gain condition (8.14). In both cases there is the

common theme that robust well-connectedness depends only on a gain con-

dition involving the nominal system M . We now explore how this notion

of small-gain can be generalized to more complex uncertainty structures.

The structures we are interested in consist of imposing some additional

property P (�) to the unit ball of operators, that is

� = f� 2 L(L2) : k�k � 1 and the property P (�) holds.g

Examples of constraints imposed by P (�) are block-diagonal structure as

in �a, or dynamic restrictions on some operator blocks (e.g. specifying

that they are LTI, or static, or memoryless, etc.). We will assume that

P (�) imposes no norm restrictions, and in fact will further assume that if

� satis�es P (�), then so does � for any  > 0. Namely the set

C� := f� 2 L(L2) : the property P (�) is satis�ed.g

is a cone (the cone generated by �). These assumptions are implicit in

what follows.
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De�nition 8.13. The structured singular value of an operator M with

respect to a set � which satis�es the above assumptions, is

�(M; �) :=
1

inffk�k : � 2 C� and I �M� is singularg (8.15)

when the in�mum is de�ned. Otherwise �(M; �) is de�ned to be zero.

The in�mum above is unde�ned only in situations were there are no per-

turbations that satisfy the singularity condition. This occurs for instance

if M = 0. If perturbations exist which make I �M� singular, the in�mum

will be strictly positive and therefore �(M; �) will be �nite. We remark

that the terminology structured singular value originates with the matrix

case, which was the �rst to be considered historically, and is discussed in

the next section.

To start our investigation we have the following result which provides an

upper bound on the value of the structured singular value. This result is a

restatement of the small-gain result.

Proposition 8.14. �(M; �) � kMk, with equality in the unstructured

case � = f� 2 L(L2) : k�k � 1g.
Proof . If k�k < kMk�1, we know that I ��M is nonsingular by small-

gain. Therefore the in�mum in (8.15) is no less than kMk�1, and thus the

�rst statement follows by inversion.

In the unstructured uncertainty case, C� is the entire space L(L2); by
scaling in Theorem 8.2, we can always construct � 2 L(L2), k�k = kMk�1,
and I ��M singular. This � achieves the in�mum and proves the desired

equality. �

So we see that the structured singular value reduces to the norm if � is

unstructured; more precisely �(M; BL(L2) ) = kMk where BL(L2) denotes
the unit ball of L(L2). Furthermore if the uncertainty is arbitrary block-

structured we have the following version of Theorem 8.12.

Proposition 8.15. Let M be an LTI, bounded operator on L2. Then

�(M; �a) = inf
�2�

k�M��1k

This proposition follows from Theorem 8.12. We leave details as an exercise.

Returning to the general case, it is clear by now that the structured

singular value is closely related to robust well-connectedness. In fact one

can write the following chain of statements:

�(M; �) < 1 if and only if inffk�k : � 2 C�, I �M� is singularg > 1;

only if I �M� nonsingular, for all � 2�;

if and only if (M;�) is robustly well-connected.

The �rst and last equivalences are by de�nition. In the intermediate step,

we did not make an \if" statement because the in�mum might be one, not
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achieved by any �. In other words, in general one can only say that robust

well-connectedness implies �(M; �) � 1. This di�culty does not appear in

the two cases considered up to now where the in�ma are indeed achieved.

The issue is a little more delicate in the case of LTI uncertainty, to be

considered in the next section. Nevertheless it is customary to regard the

condition �(M; �) < 1 as interchangeable with robust well-connectedness;

this is our desired generalization of a small-gain test.

The following example gives more insight into the broad scope of prob-

lems covered by the structured singular value, as well as its mathematical

structure.

Example:

Let the uncertainty set � = f�I : � 2 C ; j�j � 1g. Then we have the

following chain of equalities.

�(M; �) = (inffj�j : � 2 C ; I �M� is singularg)�1

= supfj��1j : ��1 2 C and I��1 �M is singularg
= supfj�j : � 2 spec(M)g
= �(M);

where �(�) is the operator spectral radius. �

So we see that the spectral radius also �ts into this very general notion

of system gain. Notice in particular that while it easy to show that the

structured singular value satis�es the scaling property

�(�M; �) = j�j�(M; �); for all � 2 C ;

in general it does not de�ne a norm. For instance the spectral radius is not

a norm.

We have thus introduced a system property, the structured singular

value, which is directly linked to the analysis of robust well-connectedness

under very general uncertainty structures. At this level of generality, how-

ever, our de�nition has not yet accomplished much, since it may not be

easy to evaluate �. What we would like is a characterization, like the one

obtained in Proposition 8.15 for � with respect to �a, that directly lends

itself to computation. Such a strong result, however, will not always be

available, which should not be surprising given the e�ort which was re-

quired to obtain this special case. Still we will �nd it valuable to again

adopt our previous the approach based on scaled norms for the general

situation.

Analogously to x8.2.1, we introduce a set of scalings which commute

with perturbations in our uncertainty structure. De�ne the nonsingular

commutant

�� := f� 2 L(L2) : � is invertible and �� = �� for all � 2�g: (8.16)
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This set does not in general have the structure (8.4) of constant, block-

diagonal matrices, but is nevertheless a well-de�ned entity. The following

can then be easily established with the methods of x8.2.1 and Proposi-

tion 8.14. Note that this result is true for any bounded operator M ; that

is M need not be a state space system or even time invariant.

Proposition 8.16. Let �� be the commutant of a general uncertainty set

�, as de�ned in (8.16). Then

�(M; �) � inf
�2��

k�M��1k:

Thus we have obtained an upper bound for the structured singular

value based on commuting scalings; equivalently, the existence of � in the

appropriate set �� satisfying

k�M��1k < 1 (8.17)

is always su�cient for robust well-connectedness over�. What is not true

in general is the necessity of the above condition. In fact only in very special

cases is the bound of Proposition 8.16 known to be an equality; one of

these is of course when M is time invariant and� =�a. Thus the scaling

method provides in general a conservative test of well-connectedness.

It is also possible in this general setting to introduce a set of positive

scaling operators, by

P�� = f� 2 L(L2) : � = ~��~� for some ~� 2 ��g:
With this de�nition, it follows that (8.17) is feasible for � 2 �� if and only

if either of the following two conditions holds.

� k� 1
2M��

1
2 k < 1 is satis�ed for some � 2 P��.

� The operator inequality

M��M � � < 0;

is feasible over � 2 P��.

The above equivalence is analogous to that of conditions (i) through (iii)

in Proposition 8.6, and can be established with similar methods, with one

important exception: here the set P�� is not in general a subset of ��.

This makes one of the above steps more involved; we will not pursue this

here, however, since we will not rely on the above equivalence at this level

of generality. Later on we will remark on this issue for the case of time

invariant uncertainty, which we are now ready to discuss.

8.4 Time invariant uncertainty

Having laid out the general framework of the structured singular value, we

now return to a speci�c uncertainty model, where the perturbations are
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assumed to be time invariant in addition to spatially structured. De�ne

the perturbation set �TI by

�TI = f� = diag(�1 : : : ;�d) 2 L(L2) : � time invariant and k�k � 1g:
Notice that this set is simply the intersection of the LTI operators on

L2[0; 1) with the set �a. Bringing in the Laplace transform from Chap-

ter 3 we see that each � 2�TI can be identi�ed with its transfer function

�̂ 2 H1, which inherits the corresponding spatial structure.

We now introduce the relation RTI that goes along with the operator

set �TI . It is possible to show given an element q in L2[0; 1) that

q = �p; for some � 2�TI ; if and only if (p; q) 2 RTI ;

where

RTI =

f(p; q) 2 L2 : �̂k 2 H1; k�̂kk1 � 1; j�̂k(j!)p̂k(j!)j = jq̂k(j!)jg:
From this we see that given any (p; q) 2 RTI the relationship

jp̂k(j!)j � jq̂k(j!)j; for almost every !;
must be satis�ed since ��(�̂k(j!) ) � 1. As with Ra we have established a

constraint between the sizes of the various components of p and q. However

the description is now much tighter since it is imposed at (almost) every

frequency. In contrast Ra can be written as

Ra =

�
(p; q) 2 L2 :

Z 1

0

jp̂k(j!)j2d! �
Z 1

0

jq̂k(j!)j2d!; k = 1; : : : ; d

�
;

which clearly shows that the relationRa only imposes quadratic constraints

over frequency in an aggregate manner.

As a modeling tool, time invariant uncertainty is targeted at describing

dynamics which are fundamentally linear and time invariant, but which we

do not desire to model in detail in the nominal description M . Thus M

could be a low order approximation to the linearized system, leaving out

high dimensional e�ects which arise, for instance, from small scale spatially

distributed dynamics. Instead of simply neglecting these dynamics, time

invariant perturbations provide a formalism for including or containing

them in RTI using frequency domain bounds.

8.4.1 Analysis of time invariant uncertainty

We will now discuss questions of robust well-connectedness for uncertain

systems with linear time-invariant uncertainty. What we will �nd in the

sequel is that robust well-connectedness in this particular setting can be

reduced to a matrix test at each point in the frequency domain. Before

setting out to show this and the related results we look at an illuminating
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example. The following example points out the di�erence we might expect

from the case of arbitrary structured uncertainty.

Example:

?

�

6-

�1 �2

G1

G2

q2

q1

p1

p2

Figure 8.4. Example system.

The uncertain system of Figure 8.4 is comprised of two �xed linear time

invariant systemsG1,G2, and two uncertainty blocks �1, �2. All blocks are

single-input and -output. We are interested in whether this con�guration

is well-connected in the sense of I��1G1�2G2 being nonsingular. We can

routinely redraw this system in the standard con�guration of Figure 8.1,

with

M =M11 =

�
0 G1

G2 0

�
and � =

�
�1 0

0 �2

�
:

Clearly I��1G1�2G2 is singular if and only if I�M� is singular. Suppose

k�1k � 1 and k�2k � 1. To investigate the well-connectedness of this

system we can invoke the small gain theorem and impose the su�cient

condition for robust well-connectedness given by

k�1G1�2G2k < 1:

If the uncertainty is time invariant, then �2 and G1 commute and we

can use the submultiplicative inequality to obtain the stronger su�cient

condition

kG1G2k = kĜ1Ĝ2k1 = ess sup
!2R

jĜ1(j!)Ĝ2(j!)j < 1 (8.18)

for robust well-connectedness. If instead �1 and �2 are arbitrary contrac-

tive operators, we are not allowed to commute the operators, so we can

only write the small-gain condition

kG1kkG2k = kĜ1k1kĜ2k1 = (ess sup
!2R

jĜ1(j!)j)(ess sup
!2R

jĜ2(j!)j) < 1:

(8.19)

These conditions are di�erent in general: frequently (8.19) can be more

restrictive than (8.18) since values of jĜ1(j!)j and jĜ2(j!)j at di�erent
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frequencies can give a larger product. For instance

Ĝ1(s) =
�

s+ 1
; Ĝ2(s) =

s

s+ 1

will satisfy (8.18) for � < 2, but (8.19) only for � < 1. An extreme case

would be if Ĝ1(j!) and Ĝ2(j!) had disjoint support.

To interpret these frequency domain conditions, notice that for � 2�TI ,

the transfer functions �̂1(j!) and �̂2(j!) are contractive at every !, thus

the small gain analysis can be decoupled in frequency, which makes (8.18)

su�cient for well-connectedness. When the perturbation class is �a the

operators �1 and �2 are still contractive, but they are allowed to \transfer

energy" between the frequencies where Ĝ1 and Ĝ2 achieve their maximum

gain, making well-connectedness harder to achieve.

It turns out that these conditions are also necessary for robust well-

connectedness in each respective case. While this can be shown directly in

the con�guration of Figure 8.4, it is illustrative to write it in the standard

form and apply the robustness analysis techniques of this chapter. This is

left as an exercise. �

We now proceed with the analysis of uncertain systems over �TI . A

standing assumption throughout the rest of this section is that the nominal

operatorM is �nite dimensional LTI, i.e. it has a transfer function M̂(s) 2
RH1.
Our main tool will be the structured singular value �, de�ned as in

De�nition 8.13 for the present uncertainty set �TI . Following the general

approach outlined in the previous section, the �rst task is to identify the

operators � which commute with the structure �TI . Notice that such an

operator must commute with the delay operator S� , for every � � 0, since

the delay S� is itself a member of �TI . Thus we see that such an � is

necessarily time invariant. If we also take into account the spatial structure,

then it is shown in the exercises that the nonsingular commuting set is

�TI =

f� 2 L(L2) : � nonsingular, LTI and �̂(s) = diag(̂1(s)I; : : : ; ̂d(s)I)g:

In other words, at every value of s in �C+ the matrix �̂(s) must have the

block-diagonal structure of (8.4), but it is no longer restricted to be con-

stant. Thus the commuting set has grown as we reduced the perturbation

set from�a to�TI . Notice also that the inverse �
�1 is automatically LTI,

or equivalently �̂�1 2 H1.

The following result provides a summary of our robustness conditions so

far.

Theorem 8.17.

�(M; �TI) � inf
�2�TI

k�̂M̂ �̂�1k1 � inf
�2�

k�M̂��1k1 = �(M; �a)



252 8. Uncertain Systems

Proof . The �rst inequality is a direct application of Proposition 8.16 to

the set �TI . The second inequality is clear since we are taking in�mum

over a smaller set. The third equality is a restatement of Theorem 8.12 and

is exactly Proposition 8.15. �

The immediate question is whether the �rst inequality above is also an

equality: is there a counterpart of Theorem 8.12 for the time invariant

uncertainty case? Unfortunately we will �nd that the answer is negative,

except in some speci�c cases. That is the inequality is usually strict. The

rest of the section will focus on this problem and pursue the analysis of

�TI in more detail.

To provide more generality, at this point we will extend the spatial

structure of our uncertainty class; consider the cone of complex matrices

C�s;f =

fdiag(�1Im1
; : : : ; �sIms

;�s+1; : : : ;�s+f ) : �k 2 C and �k 2 Cmk�mkg;
and denote its unit ball by �s;f = f� 2 C�s;f : ��(�) � 1g. Now de�ne

the time invariant uncertainty set as

�TI = f� 2 L(L2) : � is LTI and �̂(s) 2�s;f ; for every Re(s) � 0g:
In addition to the full blocks �k considered before, we are introducing

repeated scalar blocks of the form �kI in the uncertainty. This means that

the same uncertainty operator acts on a number of scalar channels. One

motivation for such repetition is to describe the rational dependence of a

transfer function on an uncertain parameter, which can be expressed in

this way (see the exercises); another motivation will be seen at the end of

this chapter.

The next de�nition de�nes the matrix structured singular value, and is

entirely analogous to De�nition 8.13. This de�nition will be central in our

reduction of LTI well-connectedness to a test on matrices.

De�nition 8.18. Given a matrix Q 2 Cm�m we de�ne the structured

singular value of Q with respect to �s;f by

�(Q;�s;f ) =
1

minf��(�) : � 2 C�s;f and I �Q� is singularg
when this minimum is de�ned, and �(Q; �s;f ) = 0 otherwise.

The following properties of � with respect to the matrix set �s;f are left

as an exercise:

� �(�Q;�s;f ) = j�j�(Q; �s;f );

� �(Q;�s;f ) = maxf�(Q�) : � 2�s;fg.
The second property implies that �(Q;�s;f ) is a continuous function of Q.

This follows from the fact that the spectral radius function �(�) is continu-
ous on the space of matrices, and the above maximum is over a compact set.
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While we have not explicitly reviewed these topological facts in this course,

it is safe to assume they are known by readers studying this material.

The next major objective we have is to show how robustness analysis

over �TI can be converted into a matrix structured singular value test

at each frequency. Before we can accomplish this we �rst need one more

property of the matrix structured singular value, in addition to the ones

above, namely that it satis�es a maximum principle over matrix functions

that are analytic in a complex domain.

To obtain this result we need a few preliminary facts regarding polyno-

mials with complex variables. The �rst is a continuity property of the roots

of a complex polynomial as a function of its coe�cients. In plain language

this result says that if all the coe�cients of two polynomials are su�cient

close to each other, then their respective roots must also be near each other.

Lemma 8.19. Let p(�) = �(� � �1)(� � �2) � � � (� � �n) be an n-th order

polynomial over C (� 6= 0). If p(k)(�) is a sequence of n-th order polyno-

mials with coe�cients converging to those of p(�), then there exists a root

�
(k)
1 of p(k)(�) such that �

(k)
1 ! �1.

Proof . At each k, we de�ne the factorization

p(k)(�) = �(k)(� � �
(k)
1 )(� � �

(k)
2 ) � � � (� � �(k)

n
)

such that �
(k)
1 is the root closest to �1 (i.e. j�1 � �(k)1 j � j�1� �(k)i

j for every
i = 1 : : : n).

Since the coe�cients of p(k)(�) converge to those of p(�), we can evaluate

at � = �1 and see that p
(k)(�1)! p(�1) = 0 as k !1. Also, �(k) ! � 6= 0.

Therefore

j�1 � �
(k)
1 jn �

nY
i=1

j�1 � �
(k)

i
j =

����p(k)(�1)�(k)

���� �! 0 as k !1:

�

The next lemma concerns the roots of a polynomial of two complex

variables. It states that a particular type of root must always exist for such

polynomials, one in which the moduli of the arguments are equal.

Lemma 8.20. Let p(�; �) be a non-constant polynomial p : C 2 ! C . De�ne

� = minfmax(j�j; j�j) : p(�; �) = 0g (8.20)

Then there exist �?; �? such that p(�?; �?) = 0 and j�?j = j�?j = �.

Proof . We start with �?; �? that achieve the minimum in (8.20). The only

case we need to consider is when � > 0 and one of the above numbers has

magnitude less than �. Take, for instance, j�?j = �, j�?j < �.
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By setting � = �? and grouping terms in the powers of �, we write

p(�; �?) =

NX
n=0

an(�
?)�n: (8.21)

Suppose that the above polynomial in � is not identically zero. If we replace

�? by (1��)�?, its coe�cients are perturbed continuously, so we know from

Lemma 8.19 that as �! 0+, the perturbed polynomial will have a root ��
converging to �?. Thus, for small enough �, we have

j��j < �; j(1� �)�?j < �; p(��; (1� �)�?) = 0:

This contradicts the de�nition of �; therefore the only alternative is that

the polynomial (8.21) must be identically zero in �. But then the value of

� can be set arbitrarily, in particular to have magnitude �, yielding a root

with the desired property. �

We are now in a position to state the maximum principle for the matrix

structured singular value. Just like the maximum modulus theorem for

scalar analytic functions, this theorem asserts that structured singular value

of a function that is analytic in the right half-plane achieves its supremum

on the boundary of the half-plane; we will actually treat the case of a

rational function.

Theorem 8.21. Let M̂(s) be a function in RH1, and �s;f be a

perturbation structure in the set of complex matrices. Then

sup
Re(s)�0

�(M̂(s); �s;f ) = sup
!2R

�(M̂(j!)�s;f ):

Proof . We �rst convert the problem to a maximization over the unit disk,

by means of the change of variables

s =
1 + �

1� �
:

This linear fractional transformation maps fj�j � 1; � 6= 1g to fRe(s) � 0g,
and the point � = 1 to s =1. Also the boundary j�j = 1 of the disk maps

to the imaginary axis.

Noticing that M̂(s) 2 RH1 has no poles in Re(s) � 0 and has a �nite

limit at s =1, we conclude that the rational function

Q̂(�) = M̂

�
1 + �

1� �

�
has no poles over the closed unit disk j�j � 1. With this change, our theorem

reduces to showing that

�0 := sup
j�j�1

�(Q̂(�); �s;f ) = sup
j�j=1

�(Q̂(�); �s;f ):
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Notice that by continuity of the matrix structured singular value, the supre-

mum �0 on the left is a maximum, achieved at some �0, j�0j � 1; we must

show it occurs at the disk boundary.

It su�ces to consider the case �0 > 0. By de�nition, we know that

1=�0 = ��(�0), where

�0 := argminf��(�) : � 2�s;f and I � Q̂(�0)� is singular g:
Now consider the equation

det[I � Q̂(�)��0] = 0

in the two complex variables �, �. Since Q̂(�) is rational with no poles in

j�j � 1, we can eliminate the common denominator and obtain a polynomial

equation

p(�; �) = 0

equivalent to the above for j�j � 1. We claim that

1 = minfmax(j�j; j�j) : p(�; �) = 0g:
In fact, the choice � = �0, � = 1 gives p(�0; 1) = 0 and max(j�0j; 1) = 1: If

we found p(�; �) = 0 for some j�j < 1, j�j < 1, we would have

I � Q̂(�)��0 singular, ��0 2�s;f ; ��(��0) < 1=�0:

This would give

�(Q̂(�)�s;f ) > �0

contradicting the de�nition of �0.

Thus we have proved our claim, which puts us in a position to apply

Lemma 8.20 and conclude there exists a root (�?; �?) of p(�; �) with j�?j =
j�?j = 1. Consequently,

I � Q̂(�?)�?�0

is singular, with ��(�?�0) = 1=�0. So we conclude that, for j�?j = 1,

�(Q̂(�?)�s;f ) = �0:

�

At this point we have assembled all the results required to prove the

following theorem, which is a major step in our analysis of time invariant

uncertainty. This theorem converts the well-connectedness of (M; �TI)

to a pure matrix test at each point in the frequency domain. It there-

fore has clear computational implication for the analysis of time invariant

uncertainty.

Theorem 8.22. Assume M is a time invariant bounded operator, with its

transfer function in RH1. The following are equivalent:
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(a) (M;�TI) is robustly well-connected;

(b) �(M; �TI) < 1;

(c) sup
!2R�(M̂(j!); �s;f ) < 1.

Furthermore, the left hand side quantities in parts (b) and (c) are equal.

Proof . It will be convenient to extend M̂ to the compacti�ed right half-

plane �C+ [f1g, de�ning M̂(1) = D. Thus M̂(s) is a continuous function

on a compact set, and so is �(M̂(s); �s;f ).

The fact that (b) implies (a) was already established in the previous

section.

To show that (a) implies (c), suppose that (c) does not hold, so

�(M̂(j!0); �s;f ) = sup
!2R

�(M̂(j!); �s;f ) � 1

for some !0 2 R [ f1g. Therefore we can �nd �0 2 C�s;f such that

��(�0) � 1 and I � M̂(j!0)�0 is singular. Choosing the constant LTI

perturbation �̂(s) = �0, clearly it belongs to�TI and I�M� is singular,

contradicting condition (a).

To show that (c) implies (b), set

� = sup
s2C+

�(M̂(s); �s;f ):

From condition (c), invoking Theorem 8.21, we know that � < 1. Fix any

scalar � satisfying 1 < � < ��1. By the de�nition of the structured singular
value we have that

� < minf��(�0) : �0 2 C�s;f and I �M(s)�0 is singularg;

for all s in �C+ [ f1g. Therefore I � M̂(s)�0 is an invertible matrix for

every s in �C+ [ f1g, and every matrix �0 2 C�s;f with ��(�) � �.

Since both s and �0 are varying over compact sets, we can uniformly

bound the norm of the matrix inverse, leading to the conclusion that

��(fI � M̂(s)�0g�1 ) is uniformly bounded.

Now for any time invariant operator � 2 C�TI , with k�k � � we conclude

that I �M� is a nonsingular operator. Therefore from De�nition 8.13 we

�nd that �(M; �TI) � ��1 < 1.

Finally note that both �(M; �TI) and sup
!2R�(M̂(j!); �s;f ) are

quantities which scale linearly with M . Thus if they were di�erent, we

could re-scale M to make one of them less than 1 and the other greater

than 1, contradicting their equivalence with condition (a). Therefore they

must be equal. �

As a �rst conclusion from the above theorem, we see that the test

�(M; �TI) < 1 is necessary and su�cient for robust well-connectedness.

Recalling our general discussion in Section 8.3, we have avoided here the
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di�culty that was mentioned in establishing necessity. The reader should

be warned, however, that for this to hold we have allowed in the step \(a)

implies (c)" the use of a constant, complex perturbation �0. This is legit-

imate since we have been working with complex signals and systems, but

it would not be allowed if we wished to constrain time domain signals to

be real-valued, as is often done; in this case the necessity direction will not

hold, as shown in the references at the end of the chapter.

As a second, important conclusion, we see that the test �(M; �TI) < 1

reduces exactly to a matrix structured singular value condition over the

frequency axis. Henceforth we concentrate exclusively on the latter problem

since it provides a direct avenue for computing well-connectedness.

8.4.2 The matrix structured singular value and its upper

bound

In this subsection we provide tools to examine and compute the structured

singular value of a matrix M . What we will �nd is that in general it is not

amenable to computation by convex methods except in a number of special

cases.

As usual, we begin by considering the set of matrices � which commute

with the perturbations, that is

�� = �� for all � 2�s;f :

Restricting ourselves to positive de�nite matrices, the commuting set has

the form

�s;f =

fdiag(�1; : : : ;�s; s+1I; : : : ; s+f I) : �k 2 Hmk ;�k > 0 and k > 0g;

where Hmk denotes the set of Hermitian, mk � mk matrices. These full

blocks �k appear in correspondence with the repeated scalar blocks �kI .

We have the following result which provides an upper bound.

Proposition 8.23.

(a) �(M;�s;f ) � inf
�2�s;f

��(�M��1);

(b) A matrix � 2 �s;f satis�es ��(�
1
2M��

1
2 ) < 1 if and only if

M��M � � < 0:

Clearly the above proposition is just a specialization to the matrix case of

our work in x8.3. An interesting point is however that in this case both con-
ditions � 2 �s;f and M��M � � < 0 of (b) are Linear Matrix Inequalities

in the blocks of �; therefore they lead directly to an e�cient computation.



258 8. Uncertain Systems

Also by combining part (a) with Theorem 8.22, we obtain

�(M; �TI) = sup
!2R

�(M̂(j!); �s;f )

� sup
!2R

inf
�!2�s;f

��
�
�! M̂(j!)��1

!

�
� inf

�2�TI
k�̂M̂ �̂�1k1:

In the �rst inequality above, notice that we allow the scaling matrix �!
to be frequency dependent. If in particular we choose this dependence to

be of the form �̂(j!) where � 2 �TI , then we obtain the second inequality,

which in fact re-derives the bound of Theorem 8.17 for this generalized

spatial structure. Now the intermediate bound appears to be potentially

sharper; in fact it is not di�cult to show both bounds are equal and we

return to this issue in the next chapter.

Another important comment is that veri�cation of the test

sup
!2R

inf
�!2�s;f

��
�
�! M̂(j!)��1

!

�
< 1

amounts to a decoupled LMI problem over frequency, which is particularly

attractive for computation.

We still have not addressed, however, the conservatism of this bound. The

rest of the section is devoted to this issue; our approach will be to revisit

the method from convex analysis used in x8.2.2, which was based on the

language of quadratic forms, and see how far the analysis can be extended.

We will �nd that most of the methods indeed have a counterpart here, but

the extension will fail at one crucial point; thus the bound will in general be

conservative. However this upper bound is equal to the structured singular

value in a number of cases and the tools we present here can be used to

demonstrate this.

We begin by characterizing the quadratic constraints equivalent to the

relation q = �p, � 2�s;f . The �rst part of the following lemma is matrix

version of Lemma 8.4; the second extends the method to repeated scalar

perturbations.

Lemma 8.24. Let p and q be two complex vectors. Then

(a) There exists a matrix �, ��(�) � 1 such that �p = q if and only if

p�p� q�q � 0:

(b) There exists a matrix �I, j�j � 1, such that �Ip = q if and only if

pp� � qq� � 0:

Proof . Assume p 6= 0, otherwise the result is trivial.
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(a) Clearly if �p = q, ��(�) � 1 then jpj � jqj or p�p � q�q � 0.

Conversely, if jpj � jqj we can choose the contractive rank one matrix

� =
qp�

jpj2 :

(b) If �p = q, j�j � 1, then pp� � qq� = pp�(1� j�j2) � 0. Conversely, let

pp�� qq� � 0; this implies ker p� � ker q� and therefore Im q � Im p.

So necessarily there exists a complex scalar � which solves

q = �p:

Now 0 � pp� � qq� = pp�(1� j�j2) implies j�j � 1.

�

Having established a quadratic characterization of the uncertainty

blocks, we now apply it to the structured singular value question.

Suppose I �M� is singular, with � 2�s;f . It will be more convenient

to work with I ��M which is also singular (see Lemma 3.16). Let q 2 Cm

be nonzero satisfying (I ��M)q = 0, so q = �(Mq). Given the structure

of �, we can use the previous lemma to write quadratic constraints for the

components of q andMq. We proceed analogously to x8.2.2. First, we write
these components as Ekq and EkMq where

Ek =
�
0 � � � 0 I 0 � � � 0

�
:

Next we de�ne the quadratic functions

�k(q) =EkMqq�M�E�
k
�Ekqq

�E�
k
;

�k(q) =q
�M�E�

k
EkMq � q�E�

k
Ekq :

Finally we bring in the sets

rs;f := f(�1(q); : : : ;�s(q); �s+1(q); : : : ; �s+f (q)) : q 2 Cm ; jqj = 1g
�s;f := f(R1; : : : ; Rs; rs+1; : : : ; rs+f ); Rk = R�

k
� 0; rk � 0g:

The latter are subsets of V = Hm1 � � � � � Hms �R � � � � �R, that is a real

vector space with the inner product

hY;Ri =
sX

k=1

Tr(YkRk) +

s+fX
k=s+1

ykrk:

The following characterization is the counterpart of Proposition 8.9.

Proposition 8.25. The following are equivalent:

(a) �(M; �s;f ) < 1;

(b) the sets rs;f and �s;f are disjoint.
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Proof . The sets rs;f and �s;f intersect if and only if there exists q, with

jqj = 1 satisfying

�k(q) � 0; k = 1 : : : s;

�k(q) � 0; k = s+ 1; : : : s+ f:

Using Lemma 8.24, this happens if and only if there exist contractive �k,

k = 1; : : : ; s, and �k, k = s+ 1; : : : ; s+ f satisfying

�kEkMq =Ekq; k = 1; : : : ; s

�kEkMq =Ekq; k = s+ 1; : : : ; s+ f:

Putting these blocks together, the latter is equivalent to the existence of

� 2�s;f and q such that ��(�) � 1, jqj = 1 and

�Mq = q

which is equivalent to (I�M�) being singular for some � 2�s;f , ��(�) �
1. By de�nition, this is the negation of (a). �

Having characterized the structured singular value in terms of properties

of the set rs;f , we now do the same with the upper bound of Proposition

8.23. Once again, the parallel with x8.3 carries through and we have the

following counterpart of Proposition 8.10.

Proposition 8.26. The following are equivalent:

(a) There exists � 2 �s;f satisfying ��(�M��1) < 1;

(b) The convex hull co(rs;f ) is disjoint with �s;f ;

(c) There exists a hyperplane in V which strictly separates rs;f and �s;f ;

that is, there exists � 2 V and �; � 2 R such that

h�; Y i � � < � � h�; Ri for all Y 2 rs;f ; R 2 �s;f : (8.22)

Proof . Notice that �s;f is convex, so (b) implies (c) by the hyperplane

separation theorem in �nite dimensional space. Conversely, if a hyperplane

strictly separates two sets it strictly separates their convex hulls, so (c)

implies (b). It remains to show that these conditions are equivalent to (a).

Starting from (a), we consider the LMI equivalent M��M � � < 0, for

some � 2 �s;f . For every vector q of jqj = 1, we have

q�(M��M � �)q < 0:

Now we write

� =

sX
k=1

E�
k
�kEk +

s+fX
k=s+1

kE
�
k
Ek
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that leads to the inequality

sX
k=1

(q�M�E�
k
�kEkMq � q�E�

k
�kEkq) +

s+fX
k=s+1

(kq
�M�E�

k
EkMq � kq

�E�
k
Ekq) < 0

for jqj = 1. Taking a trace, we rewrite the inequality as

sX
k=1

Tr (�k(EkMqq�M�E�
k
�Ekqq

�E�
k
)) +

s+fX
k=s+1

k(q
�M�E�

k
EkMq � q�E�

k
Ekq) < 0

which we recognize as h�; Y i < 0, with

Y = (�1(q); : : : ;�s(q); �s+1(q); : : : ; �s+f (q)) and

� = (�1; : : : ;�s; s+1; : : : ; s+f )

Also since �k > 0, k > 0 we conclude that

h�; Ri � 0 for all R 2 �s;f

so we have shown (8.22). The converse implication follows in a similar way

and is left as an exercise. �

The last two results have characterized the structured singular value and

its upper bound in terms of the sets rs;f and �s;f ; if in particular the set

rs;f were convex, we would conclude that the bound is exact. This was

exactly the route we followed in x8.2.2. However in the matrix case the

set rs;f is not convex, except in very special cases. Recalling the proof of

Lemma 8.11, the key feature was the ability to shift in time, which has

no counterpart in the current situation. In fact, only for structures with

a small number of blocks can the bound be guaranteed to be exact. Such

structures are called �-simple. We have the following classi�cation.

Theorem 8.27.

�(M; �s;f ) = inf
�2�s;f

��(�M��1)

holds for all matrices M if and only if the block speci�ers s and f satisfy

2s+ f � 3 :

For the alternatives (s; f) 2 f(0; 1); (0; 2); (0; 3); (1; 0); (1; 1)g that satisfy
2s+ f � 3, the proof of su�ciency can be obtained using the tools intro-

duced in this section. In particular, an intricate study of the set rs;f is
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required in each case; details are provided in Appendix C. Counterexam-

ples exist for all cases with 2s+ f > 3. We remark that the equality may

hold if M has special structure.

As an interesting application of the theorem for the case (s; f) = (1; 1),

we invite the reader to prove the following discrete time version of the KYP

lemma. As a remark, in this case the �I block appears due to the frequency

variable z, not to uncertainty; this indicates another application of the

structured singular value methods, which also extends to the consideration

of multi-dimensional systems, as will be discussed in Chapter 11.

Proposition 8.28. Given state space matrices A;B;C and D, the follow-

ing are equivalent.

(a) The eigenvalues of A are in the open unit disc and

sup
z2�D

��(C(I � zA)�1zB +D) < 1 ;

(b) There exists a symmetric matrix � > 0 such that�
A B

C D

�� �
� 0

0 I

��
A B

C D

�
�
�
� 0

0 I

�
< 0 :

This completes our investigation of time invariant uncertainty and in

fact our study of models for uncertain systems. We now move to the next

chapter where we use our results and framework to investigate stability and

performance of uncertain feedback systems.

8.5 Exercises

1. This example is a follow-up to Exercise 6, Chapter 5 (with a slight

change in notation). As described there, a natural way to perturb a

system is to use coprime factor uncertainty of the form

P̂� = (N̂ + �̂N )(D̂ + �̂D)
�1:

Here P̂0 = N̂D̂�1 is a nominal model, expressed as a normalized

coprime factorization, and

� =

�
�̂N

�̂D

�
is a perturbation with a given norm bound.

a) Find M such that algebraically we have P� = �S(M;�). Is your

M always a bounded operator?

b) Repeat the questions of part a) to describe the closed loop map-

ping from d1, d2 to q in the diagram given in Exc. 6, Chapter

5.



8.5. Exercises 263

2. Consider the partitioned operators

N =

�
N11 N12

N21 N22

�
; H =

�
H11 H12

H21 H22

�
:

Find the operator M such that Figure 8.1 represents

a) The cascade of Figure 8.2, i.e.

�S(M;�) = �S(N;�1) �S(H;�2) with � = diag(�1;�2):

b) The composition �S(M;�) = �S(H; �S(N;�)), where we assume

that I � N22H11 has a bounded inverse. Draw a diagram to

represent this composition.

c) The inverse �S(M;�) = �S(N;�)�1, where we assume that N22

has a bounded inverse.

3. Commutant sets.

a) Let � 2 C n�n . Prove that if �� = �� for all � 2 C n�n , then
� = In,  2 C .

b) Let � 2 C n�n . Show that if �� = �� for all structured � =

diag(�1; : : : ;�d), then � = diag(1I; : : : ; dI), where i 2 C

and the identity matrices have appropriate dimensions.

c) Let � 2 C n�n . Show that if �� = �� for all � 2 �s;f , then

� 2 �s;f .

d) Characterize the commutant of �TI in L(L2) (i.e. the set �TI
of operators that commute with all members of �TI).

e) Characterize the commutant of �a in L(L2).

4. Derive Proposition 8.15 from Theorem 8.12.

5. Consider the example of x8.4.1 (note all systems are SISO). It is

shown there that

(i) If �1, �2 are arbitrary operators, then kG1kkG2k < 1 is

su�cient for robust well-connectedness.

(ii) If �1, �2 are LTI operators, then kG1G2k1 < 1 is su�cient for

robust well-connectedness.

Show that both of the above conditions are necessary as well as suf-

�cient, by reducing them to the standard (M;�) form and applying

the theory of this chapter. What happens when only one of the �i is

known to be LTI?

6. Show that

a) �(�Q; �s;f ) = j�j��s;f
(Q);

b) �(Q; �s;f ) = maxf�(Q�) : � 2�s;fg.

7. Rational functions in linear fractional form.
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a) Given the polynomial p(�) = pn�
n+ � � �+ p1�+ po, �nd M such

that �S(M; �I) = p(�) for an identity matrix of the appropriate

size.

b) Using Problem 2 above, show that a similar representation is

available for a rational function r(�) =
p(�)

q(�)
as long as q(0) 6= 0.

c) Generalize the above to matrices of rational functions, and to

rational functions of many variables �1; : : : �d.

d) Apply to the following modeling problem. Consider the second

order transfer function

Ĥ(s) =
1

s2 + s+ !2
n

Assume the natural frequency !n is only known up to some error,

i.e. !n = !0+ k�, � 2 [�1; 1]. Find M̂(s) and the corresponding

dimension of the identity matrix, such that Ĥ(s) = �S(M̂(s); �I):

8. Analysis with real parametric uncertainty. From the preceding exer-

cise we see that rational dependence of a system on a parameter

can be represented in our setup of Figure 8.1 by an appropriate

block �I , � 2 R. This leads us to consider the mixed parametric/LTI

uncertainty structure

� =

fdiag(�1I; : : : ; �sI;�s+1; : : : ;�s+f ) 2�TI : �k 2 [�1; 1]; 1 � k � rg :

In other words, the �rst r blocks (r � s) in the general LTI structure

correspond to real parameters. For this structure it is possible to

generalize Theorem 8.22 and reduce the analysis over frequency to

the structured singular value test

sup
!2R

�(M̂(j!); �r

s;f
) < 1;

where the structure �r

s;f
� Cm�m is de�ned as

�r

s;f
=

fdiag(�1I; : : : ; �sI;�s+1; : : : ;�s+f ) 2�s;f : �k 2 [�1; 1]; 1 � k � rg :

We focus on a �xed frequency !, let Q = M̂(j!). Since �r

s;f
��s;f

we know that the LMI condition

Q��Q� � < 0; � 2 �s;f

is su�cient for �(Q; �r

s;f
) < 1. We wish to re�ne this bound by

exploiting the real blocks of �. Consider the additional matrix scaling

set

G = fG = diag(G1; : : : ; Gr; 0; : : : ; 0) : Gk = G�
k
g � Cm�m :
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a) Show that if q 2 ker(I ��Q), with � 2�r

s;f
, then

q�(GQ�Q�G)q = 0 for all G 2 G:
b) Deduce that the LMI test in � and G,

Q��Q� � < 0 + j(GQ�Q�G) < 0; � 2 �s;f ; G 2 G;
is su�cient for �(Q; �r

s;f
) < 1.

c) Discuss how to generalize this procedure to study struc-

tures which combine real-parametric �I blocks with arbitrary

operators �s+k as in x8.2.
9. Extension of maximum modulus principle for �.

a) Extend Lemma 8.20 to polynomials of several complex variables.

b) Given a matrix M and a complex uncertainty structure �s;f ,

show that if

�0 = arg min
�2�s;f

f��(�) : I �M� is singularg;

then without loss of generality �0 can be taken to be of the form

�U , with � > 0 and U unitary.

c) Deduce that

��s;f
(M) = max

�2�s;f

�(M�) = max
U2�s;f ;U unitary

�(MU):

10. In this problem we will generalize the robust well-connectedness re-

sults of x8.2 by expanding the set �a to include \diagonal" elements

similar to those we saw when studying the matrix structured singular

value. De�ne �a
s;f to be the set

�a

s;f := fdiag(�1Im1
; : : : ; �sIms

;�s+1; : : : ;�s+f ) :

�k 2 L(L12); �k 2 L(Lmk

2 ); and k�k < 1g:
Here the notation �kImk

is shorthand for the operator diag(�k; : : : ; �k)

which acts on Lmk

2 ; note that �k itself acts on the space of scalar

functions L12. Realize that if these new types of blocks are not present

we have the usual de�nition of �a from our work in x8.2.
a) Find the commutant set of this expanded perturbation set�a

s;f ,

and therefore the corresponding scaled small-gain theorem.

b) Here we will derive a generalization of Proposition 8.7, which

will relate well-connectedness to an infeasibility condition on a

new set of quadratic forms.

i) Suppose x1; x2; y1; y2 2 Rn , and that x1 and x2 are linearly

independent. Prove: there exists a matrix A 2 Rn�n with

��(A) � 1 such that

y1 = Ax1 and y2 = Ax2
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if and only if the matrix�
y�1
y�2

�
[y1 y2]�

�
x�1
x�2

�
[x1 x2] � 0:

ii) Suppose p1; p2; q1; q2 are scalar-valued functions in L
1
2, and

that p1 and p2 are linearly independent. Show that there

exists an operator � 2 L(L12) with k�k � 1 such that

q1 = �p1 and q2 = �p2

if and only if the matrixZ 1

0

�
q1(t)

q2(t)

�
[q1(t) q2(t)] �

�
p1(t)

p2(t)

�
[p1(t) p2(t)] dt � 0:

iii) Now prove the generalization: given two Rm -valued func-

tions p; q 2 Lm2 , there exists an operator � 2 L(L12) with
k�k � 1 such that

q = �Imp

if and only if the matrixZ 1

0

q(t)q�(t)� p(t)p�(t) dt � 0:

Here there are no independence conditions as there were

above.

iv) De�ne the matrices

Ek =
�
0 � � � 0 I 0 � � � 0

�
; for 1 � l � s+ f;

which are de�ned so that
P

s+f
l=1 E

�
l
El = I , and we have

E�
k
diag(�1Im1

; : : : ; �sIms
; �s+1; : : : ; �s+f )Ek =�

�k; 1 � k � s

�k; s+ 1 � k � s+ f

for every � 2 �a. Use these to de�ne the quadratic forms

�k : L2 ! Hmk and �k : L2 ! R by

�k(p) =

Z 1

0

fEkq(t)q�(t)E�k �Ekp(t)p
�(t)E�

k
g dt;

for 1 � k � s where q :=Mp, and

�k(p) =

Z 1

0

fq�(t)E�
k
Ekq(t)� p�(t)E�

k
Ekp(t)g dt;

for s+1 � k � s+f . Prove that if there exists a nonzero p in

L2 so that �k(p) � 0 for 1 � k � s, and �k(p) � 0 for s+1 �
k � s + f , then (M; �a

s;f ) is not robustly well-connected.

Observe this is a generalization of Proposition 8.7.
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c) Use the quadratic forms in (b, iv) to generalize the work in x8.2
to the set (M; �a

s;f ), and thus provide a more general version

of Theorem 8.12. The work in x8.4.2 will be helpful.

11. Suppose Q and R are state space operators in L(L2), that Q�Q =

QQ� = I , and that Q12 is surjective. Also assume that the system in

the �gure below is well-connected.

�

-

�

�
Q

R

z w

p q

a) Prove the norm kRk � 1 if and only if kS(Q;R)k � 1. Consulting

the �gure may be helpful.

b) Suppose A, B, C, D is a realization for the state space system

P , where ��(D) < 1 and A is Hurwitz. Show that kP̂k1 � 1, if

and only if, kP̂Qk1 � 1. Here PQ is the state space system with

realization

AQ = A+B(I �D�D)�1D�C

BQ = B(I �D�D)�
1
2

CQ = (I �DD�)�
1
2C

DQ = 0

Hint: exploit part (a) by setting R̂ = P̂ and

Q̂(s) =

�
D� (I �D�D)

1
2

(I �DD�)
1
2 �D

�
:

Notice: this question converts a question about a system with

a D-term to one without a D-term. This procedure is called

loop-shifting.

c) Prove that AQ in (b) must be Hurwitz if kP̂k1 � 1 and A is

Hurwitz.

d) Generalize these results to strict inequalities; that is systems

that are strictly contractive.
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Notes and references

The contemporary methods of robustness analysis are rooted in the work

of the 1960s on feedback stability for nonlinear systems from an input-

output perspective. In this category fall the small gain theorem [118, 151]

and methods based on passivity, particularly emphasized by the Russian

school where they were termed \absolute stability theory" [100, 146]. In

this literature we already �nd \multiplier" methods for stability analysis

of various component nonlinearities which are direct precursors of the �-

scalings considered in this chapter.

The observation that these methods could be used to study uncertain sys-

tems can be traced back to [151], but the subject was largely not pursued

until the late 70s when robustness began to be emphasized (see [115]) and

the connection toH1 norms was pointed out [152]. In particular the formal-

ization of uncertainty in terms of � blocks appeared in the papers [112, 23],

and [23] introduced the matrix structured singular value for studying time

invariant uncertainty. Subsequently a great deal of research activity was

devoted to its study, and to its extension to mixed real parametric and LTI

uncertainty [34]. Much of this research is summarized in [88, 90, 150]. The

observation that the test �(M; �TI) < 1 can be conservative when dealing

with real-valued signals can be found in [130]. Computing the structured

singular value for an arbitrary number of blocks appeared to be a vexing

task, and in [14, 131] it was demonstrated that the problem is NP-hard.

Given these di�culties, it was welcome news when it was discovered in

the early 90s that convex upper bounds had an interpretation in their own

right. The �rst result came from the parallel theory of robust control using

L1 signal norms, which we have not covered in this course (see [17], and

also [5] for structured singular value methods in this context). It was shown

in [70] that scaled small gain conditions in the L1-induced norm, analogous
to Theorem 8.12 where exact for the analysis of arbitrary time-varying

operators. These results led to the study of the analogous question for the

case of L2 norms, leading to the proof of Theorem 8.12 in [80, 122] (see also

the related work [9]). The proof we presented is based on [82], which brought

in and extended the S-procedure [147] that had been developed in parallel

in the absolute stability literature. An extension of this viewpoint, which

makes IQCs [81] the central object, will be discussed in a later chapter. In

a sense, robust control has come full-circle to reinterpret the tools of input-

output stability analysis: instead of a known nonlinearity we are dealing

with an unknown ball of operators, and thus we obtain necessary as well

as su�cient conditions.

In [99] these results are extended to show that the test with frequency

varying scalings, presented in Theorem 8.17, has a similar interpretation as

an exact test for the analysis of structured slowly varying perturbations.

The monograph [30] studies these structured robustness problems for hy-
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brid sampled-data systems, and shows that many of them have unique

properties in this setting.

At the beginning of this chapter sets of systems were de�ned in terms of

explicit perturbations to a nominal plant. Another way to obtain a set of

systems is to put a topology on the space of all plants, and consider open

sets around the nominal system. This approach was initiated in [153] and

[135] where the gap metric and graph topology were de�ned, respectively.

For details on this research direction see for instance [44, 138] and the

references therein; at present these approaches do not explicitly consider

subsystem and component uncertainty.
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9

Feedback Control of Uncertain

Systems

In this chapter we bring together the separate threads of synthesis of feed-

back controllers in the absence of uncertainty, and analysis of uncertain

systems, into a common problem involving both uncertainty and control.

This problem is represented by the diagram shown in Figure 9.1, where G

is the generalized plant as in earlier chapters, but now also describes depen-

dence on system uncertainty. The perturbation � belongs to a structured

ball, and K represents the controller.

G

�

K

wz

q

u

p

y

Figure 9.1. Feedback system with uncertainty

We will assume throughout this chapter that G and K are standard state

space systems, and they are therefore LTI and causal; nonetheless many of
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our results can be extended to an in�nite dimensional setting provided time

invariance and causality are maintained. Before proceeding any further, we

should note that feedback diagrams have been used in the preceding chap-

ters in two di�erent settings. In Chapters 5 through 7, they represented the

feedback interconnection of causal, LTI, �nite dimensional systems, moti-

vated by the modeling of an actual physical interconnection. In contrast,

in Chapter 8 we explored the possibilities of models which are not LTI, or

even completely speci�ed in the sense that they are only known up to a per-

turbation set. In this chapter our goal is to combine these viewpoints, and

investigate both analysis and synthesis for closed-loop feedback systems

using the tools we have already developed.

We assume our system consists of a number of di�erent interconnected

subsystems, and we need to specify the minimal desired properties of this

closed-loop setup. What we will require of the feedback system depicted in

Figure 9.1 is:

� Given any initial states for the state space systems G and K, and any

w 2 L2[0; 1), there exist unique solutions in L2 for the functions

z; p; q; u and y;

� The states of G and K tend asymptotically to zero, from any initial

conditions, if w = 0;

� The �ve maps on L2 from the input w to the functions z; p; q; u and

y are all bounded, assuming zero initial conditions for G and K.

Note that � is a bounded operator on L2 and therefore has no initial condi-

tions associated with it. When the feedback system satis�es these conditions

we will say it is stable. These conditions ensure that (a) the equations which

describe the feedback system always have meaning; (b) deviations in the

initial states of G and K away from equilibrium are innocuous; and (c) the

e�ect of w on the system is bounded.

Our �rst objective is to �nd conditions under which we can guarantee

that the system in Figure 9.1 is stable. Unless otherwise noted, we have

the following standing assumptions during this chapter:

� G is internally stabilized by K, in the sense of Chapter 5;

� � belongs to the class

�c = f� 2�; � is causal g � L(L2)
where � is one of the uncertainty classes considered in the previous

chapter.

These assumptions deserve some comment, particularly with regard to the

causality of �. The �rst of the assumptions says that K internally stabi-

lizes G. This means that the feedback system in Figure 9.1 is stable if �

is set to zero, and we therefore call this nominal stability. Since we will
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eventually treat � as a perturbation lying in a set which always contains

zero, this assumption is not restrictive. The causality of � is not as strongly

justi�able, and at this point we make it for purely technical reasons which

will become apparent in x9.1.
To end this section we provide a sketch of the path we will take in

the chapter, where we will consider robust stability and performance of

the above feedback system. First, because of our assumption of nominal

stability, we can de�ne the interconnections of G andK by the star product

M = S(G;K);

which is an LTI system with transfer function in RH1. Thus we can think
formally about our uncertain system as the con�guration of Figure 9.2

below.

p q

�

M11 M12

M21 M22
z w

Figure 9.2. Robustness analysis setup

Now this setup loops exactly like the arrangement from Chapter 8. Indeed

our strategy is to study the robust stability of the overall system Figure

9.1 using the approach and results of Chapter 8.

We say the system of Figure 9.1 is robustly stable when it is stable for

every � 2 �c. When robust stability holds we will consider questions of

performance, as usual measured in terms of keeping the mapping from w

to z \small". If I �M11� is nonsingular we have

w 7! z = �S(M;�) =M22 +M21�(I �M11�)
�1M12; (9.1)

which is a bounded operator on L2. In this chapter we will take its induced

norm as measure of performance; for alternatives see Chapter 10. The sys-

tem of Figure 9.1 is said to have robust performance if it is robustly stable

and

k �S(M;�)k < 1;

for every � 2 �c. Notice that robust performance implies in particular

both robust stability and the nominal performance condition kM22k < 1; it
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should be clear, however, that robust performance is a stricter requirement

than the combination of these two.

At this point it is apparent our work in Chapter 8 will pay large divi-

dends provided that we can rigorously connect the equations which satisfy

the interconnection in Figure 9.1 to the simpli�ed setup in Figure 9.2. Al-

though the diagrams appear to make this obvious, we must be careful to

ensure that the diagrams say the same thing as the equations which actu-

ally describe the system. We have the following theorem which provides us

with a guarantee of this.

Theorem 9.1. Suppose that � 2 L(L2) is causal, and the assumption

of nominal stability holds. If (I � M11�)
�1 exists as a bounded, causal

mapping on L2, then the feedback system in Figure 9.1 is stable, and the

furthermore the mapping w to z is given by (9.1).

This theorem says that analysis of Figure 9.2 provides us with guarantees

for both stability and performance of the system in Figure 9.1, assuming

that (I �M11�)
�1 is causal in addition to being in L(L2). In the following

section we will prove this theorem and in doing so the motivation behind

the causality constraint will become clear.

To prove Theorem 9.1 rigorously will require some additional prepara-

tion, and this proof is the main topic of the next section. Subsequently,

once we have established Theorem 9.1, we will proceed in x9.2 to applying
the results of Chapter 8 directly to analysis of robust stability and per-

formance of feedback systems. Finally in x9.3 we discuss the synthesis of

feedback controllers for robust performance.

9.1 Stability of feedback loops

In this section we will prove Theorem 9.1 and in fact show stability under

more general circumstances than we have speci�ed above. The results of

the section apply speci�cally when G and K are �nite dimensional state

space systems, however with appropriate modi�cations they hold for more

general G and K.

Our �rst observation is that the state space plant G does not necessarily

de�ne a bounded LTI operator on L2, nor does the state space controllerK.

That is their transfer functions Ĝ(s) and K̂(s) are not necessarily in RH1.
Indeed one of the purposes of K is to internally stabilize G. To be precise,

given a state space system R with realization (A; B; C; D) we de�ne its

e�ect on an input u from L2[0; 1) by

(Ru)(t) = C

Z
t

0

eA(t��)Bu(�) d� +Du(t):

So if A is not Hurwitz, this does not de�ne a bounded mapping on L2
assuming that (A; B; C) is a minimal realization. However it is routine to
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verify that, for any T > 0, the inequalityZ
T

0

j(Ru)(t)j22 dt <1 is satis�ed. (9.2)

So although Ru may not be an element of L2, the energy of (Ru)(t) is

bounded on any �nite interval.

9.1.1 L2-extended and stability guarantees

This observation motivates the de�nition1 of the space of functions L2-

extended denoted by L2e. De�ne

L2e = f w : [0;1)! C n satisfying PTw 2 L2[0; 1), for all T > 0g:
Recall that PT is the mapping which truncates the support of any function

to the interval [0; T ], thus this is just the space of functions whose energy

is �nite on any �nite interval. The space L2e is a vector space by pointwise

addition, where we equate two elements v and g if they satisfy kPT (v �
g)k2 = 0, for all T � 0. Thus it contains L2 as a subspace, however L2e
itself is not a normed space.

Now it is routine to verify that any state space system such as R de�ned

above satis�es

R : L2e ! L2e:

Namely any state space system de�nes a mapping on L2e. Therefore G and

K will always de�ne maps on L2e. Notice also that any such state space

system is causal since

PTR = PTRPT ; for all T � 0.

We make some observations about linear mappings on L2e. Since L2e is a

vector space the linear mappings on it are familiar, and in particular we

can de�ne the inverse of a linear mapping on L2e in the usual way. We say

that a mapping on L2e is bounded if it de�nes a bounded linear mapping

when restricted to L2.

We can now use these notions to directly address the stability of Fig-

ure 9.1. First we consider the uncertain system shown in Figure 9.3. It

shows G and � without the controller. Now this creates the model for the

uncertain system we aim to control. Notice however that if G is an unstable

state space system we cannot assume that p is an L2 signal. Thus we need

to assume for now that � is a well-de�ned linear mapping on L2e which is

bounded.

We are now ready to prove a version Theorem 9.1. The important in-

gredient we now have in our analysis is that we will be able to postulate

1this space is also called L2-local, but the term L2-extended is more apt here.
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p q

�

G

z w

Figure 9.3. Uncertain plant

solutions to our closed-loop systems equations over L2e, which is a set con-

taining both the domain and codomain of G andK. If we instead attempted

to prove uniqueness of solutions to the equations governing Figure 9.1 over

just L2, we could not rule out the existence of solutions in L2e. Namely the

fact that the solutions p, q, u, y and z in Figure 9.1 are in L2, when w is

in L2, should be a conclusion of our analysis not an a priori assumption.

We have the following result, and remark that if a system satis�es (i){(iii)

we say it is L2e-stable.

Theorem 9.2. Pertaining to Figure 9.1, suppose

(a) That � is a linear mapping on L2e and is bounded on L2;

(b) The state space system G is internally stabilized by the state space

controller K;

(c) The inverse (I�M11�)
�1 exists as a mapping on L2e and is bounded

on the normed space L2.

Then

(i) Given any w in L2e and initial states of G and K, there exist unique

solutions in L2e for p, q, u, y and z. Furthermore if w is in L2, so

are the other �ve functions;

(ii) The states of G and K tend asymptotically to zero, from any initial

condition, when w = 0;

(iii) The maps w to p, q, u, y and z are all bounded on L2, when the initial

states of G and K are zero. Furthermore, if the latter condition holds

the mapping w to z is given by (9.1).

This result di�ers from Theorem 9.1 in two main respects. One: the inverse

(I�M11�)
�1 need not be causal, it simply needs to be de�ned on all of L2e

and bounded on L2. Two: here we look for solutions to our loop equations

without assuming up front that they necessarily lie in L2; if w is chosen in
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L2 then we see that the solutions to loop equations necessarily lie in L2. In

x9.1.2 we will see that Theorem 9.1 is a special case of the current theorem.

Proof . We �rst prove (i). Choose w in L2e and an initial state

(x(0); xK(0) ) for the state space systems G and K. Now the equations

governing this system are the state space equations for G and K, and the

operator equation q = �p. We initially suppose that solutions for p, q, u,

y and z exist in L2e, and we will show that they are unique. Now by rou-

tine algebraic manipulations we can write the equations that govern the

feedback loops of this system as

q = �p

_xL = ALxL +BL1q +BL2w; where xL(0) = (x(0); xK(0) )

p = CL1xL +DL11q +DL12w:

Here AL, BL, CL and DL is the state space representation for the inter-

connection of G and K, and thus we know from hypothesis (b) that AL is

Hurwitz. Clearly this is a state space realization for the operatorM . From

this we see that

p =M11q +M12w + CL0 ~ALxL(0);

where ~AL : C n ! L2 via the relationship ~ALxL(0) = eALtxL(0). Now

applying assumption (c) above we have that

p = (I �M11�)
�1M12w + (I �M11�)

�1CL0 ~ALxL(0): (9.3)

Thus we see that p must be uniquely determined since w and xL(0) are

�xed, and then the function q is uniquely speci�ed by p. Since the inputs

q, w, and the initial conditions of the state space systems G and K are all

speci�ed, we know from (b) and the work in Chapter 5 that u, y and z are

unique and in L2e.

To complete our demonstration of (i) we must show the existence of

solutions. To see this simply start by de�ning p from (9.3), given any w 2
L2e and initial condition xL(0), and essentially reverse the above argument.

Also if w is in L2 then by the boundedness of M , (I �M11�)
�1, and ~AL

we see that p must be in L2. Immediately it follows that q must be in L2
since � is bounded, and again by the nominal stability in (b) we have now

that the other functions are also in L2.

We now prove (ii). From above we know that if w = 0 we have

p = (I �M11�)
�1CL0 ~ALxL(0);

and so q = �p is in L2 since AL is Hurwitz and � is bounded. Continuing

under these conditions we have

_xL = ALxL +BL0q; with some initial condition xL(0).

It is not di�cult to show that xL(t)! 0 as t!1, since q is in L2.
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Finally we need to show that the maps from w to the other functions are

bounded on L2. From above we already know that the maps from w to p

and q are bounded on L2. This means that the map from w to the state

xL must be bounded on L2 since AL is Hurwitz. Finally the functions z, u

and y are all simply given by matrices times w, xL and q and so the maps

from w to them must also be bounded on L2.

To end, the mapping w to z is given by (9.1) follows routinely from the

above formula for p, and the state space de�nition of the operator M . �

The theorem just proved gives us a set of su�cient conditions for L2e
stability where the mapping � is de�ned on L2e and is bounded. Note that

it is not necessarily causal. We would however like to de�ne our perturba-

tions from the operators on L2 in keeping with our work in Chapter 8, and

we now address this topic.

9.1.2 Causality and maps on L2-extended

From our discussion so far it is clear that any bounded mapping on L2e
de�nes an element of L(L2) simply by restricting its domain. We would

now like to examine the converse problem. Suppose that Q 2 L(L2), then
Q is not de�ned on all of L2e and it is not necessarily clear that the domain

of Q can be extended to L2e while maintaining the linearity of Q. Consider

the following example.

Example:

De�ne the convolution operator Q on L2 by

(Qu)(t) =

Z 1

t

e(t��)u(�)d�;

which can be shown to have an L2-induced norm of one. However we see

that it is not possible to make this meaningful for some inputs in L2e; for

instance set u(�) = e� which yields a diverging integral, for every t � 0.

�

The problem with the above example can be attributed to the non causal-

ity of Q. In contrast, we now see that causal operators on L2 can always

be extended to L2e. To this end observe that given any causal operator

Q 2 L(L2), we can de�ne Qu = v, for u 2 L2e, by
PT v = PTQu := PTQPTu;

for each T . We leave it to the reader to verify that this provides a valid de�-

nition, namely that if PT1v and PT2v are de�ned as above for T1 < T2, then

PT1PT2v = PT1v; this follows from the causality of Q in L2. Summarizing,

we have:
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Proposition 9.3. Suppose Q is a causal operator in L(L2). Then Q

de�nes a linear causal mapping on L2e, which is bounded on L2.

We are now in a position to see why Theorem 9.1 is a special case of

Theorem 9.2. In Theorem 9.1 we assume that both � and (I �M11�)
�1

are causal and in L(L2). Thus by the above proposition these assumptions

imply that both these operators de�ne bounded mapping on L2e. This is

exactly what is required in conditions (a) and (c) of Theorem 9.2. Both

theorems assume that G is stabilized by K, and therefore the hypothesis

of Theorem 9.2 is less restrictive. However the conclusions (i){(iii) of this

theorem are stronger than that of Theorem 9.1, since it guarantees L2e-

stability not just stability. Hence Theorem 9.1 is a special case.

To complete our discussion it is natural to inquire whether non-causality

always prevents us from extending the domain to of de�nition to L2e. In

other words is existence of an extension to L2e any more general than

causality? the following example shows the answer is a�rmative.

Example:

Let us de�ne the mapping Q on L2 by

(Qu)(t) = u(2t); for t � 0:

Clearly this mapping is linear. It is straightforward to verify that 2kQuk2 =
kuk2, for any u in L2, and so Q is a bounded operator with an induced

norm of one-half. This operator is anti causal since the value of (Qu)(t) is

equal to the value of u at time 2t in the future. From the above formula

for Q we see that it can be immediately extended to a linear mapping on

L2e. �

Thus we see that our results of Theorem 9.2 are strictly more general

than those requiring causality; nevertheless, the latter condition is the most

common means of extending operators to L2e; accordingly, in the rest of

this chapter we will restrict � to be causal.

We now briey remark on the implications of the causality restriction

from the point of view of uncertainty modeling. The usual argument in

favor of causal models is physical realizability; in this regard, it is natural

that a component such as K, which directly models a physical controller,

be taken as causal. However the situation is less obvious in the case of

�, which often does not directly model a physical system, but instead is

a part of a parametrization of a relation (e.g. Ra) which is the actual

model of a physical component. In these cases the main reason to choose

a causal model is mathematical convenience: this allows us to isolate � as

though it were a component, and in this way to standardize a large class

of uncertainty models into a single prototypical form. While this might

restrict somewhat our modeling possibilities, experience seems to indicate

that the restriction is not severe. Furthermore in the next section we will
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see that the restriction to causal operators has no e�ect on the robustness

conditions we are able to obtain.

A �nal question in regard to causality is whether it is possible for the

inverse (I �M11�)
�1 to be non causal, even when M11 and � are both

causal. An example shows us that this is indeed possible2.

Example:

First recall the anti causal operator Q de�ned in the last example. Its

inverse is

(Q�1u)(t) = u(t=2); for t � 0:

This mapping is linear and causal; it is straightforward to verify that

kQ�1uk2 = 2kuk2, for any u in L2, and so Q�1 is a bounded operator.

We can now construct our counter example to (I�M11�)
�1 being causal.

Set

M11 = I and � = I �Q�1;

and we see (I �M11�)
�1 = Q which is anti causal as discussed earlier. �

Despite this counterexample, we will now see that the causality of (I �
M11�)

�1 can be assured if � is causal and a spectral radius condition

is satis�ed. This result is signi�cant for our robustness analysis because it

shows that if (I�M11�)
�1 is not causal, then there exists a complex scalar

j�j � 1, such that I � �M11� is singular. In words, if the above inverse is

not causal, then there exists a smaller perturbation of the same structure

which causes our well-connectedness condition to fail. Now for the result.

Proposition 9.4. Let M11 and � be causal operators in L(L2). If

rad(M11�) < 1, then (I �M11�)
�1 exists in L(L2) and is causal.

Proof . Clearly I�M11� is invertible since its spectrum is by assumption

inside the unit disc. Also by this assumption we know from Chapter 3 that

its inverse has a series expansion

(I �M11�)
�1 =

1X
k=0

(M11�)
k :

Now since M , �, are causal, so is (M�)k for every k, and thus also the

series which gives (I �M�)�1. �

Having clearly established the relationship between feedback systems in-

volving uncertainty and the tools of Chapter 8, we are now ready to analyze

stability and performance in the feedback arrangement of Figure 9.1.

2Such examples are impossible in discrete time if starting at time zero.
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9.2 Robust stability and performance

We are now ready to confront robustness for the general feedback control

setup of Figure 9.1. In this section we will concentrate on the analysis of

robust stability and performance for a given controller K.

We start with the following de�nition which can be interpreted in terms

of Figure 9.2. With respect to a causal set �c of contractive perturbations

and a causal operator M , both residing in L(L2), we say:
� The uncertain system (M11; �

c) is robustly stable if (I �M11�)
�1

exists in L(L2) and is causal, for each � in �c;

� The uncertain system (M; �c) has robust performance if (M11; �
c)

is robustly stable and k �S(M; �)k � 1, for every � 2�c.

Stability here is identical to our de�nition of well-connectedness in Chap-

ter 8, except that now we demand that the relevant inverse be causal. We

de�ne robust performance to be stability plus contractiveness of the closed-

loop, which again is identical to the performance criterion we imposed in

Chapter 8.

Having made this de�nition we have the following result which is a di-

rect consequence of our work in x9.1. It states that if (M; �c) has robust

stability or performance, then the feedback system of Figure 9.1 will also

enjoy the respective property.

Theorem 9.5. Suppose K internally stabilizes G. If the uncertain system

(M11; �
c) has robust stability, then the feedback system described by Fig-

ure 9.1 is robustly stable. Furthermore, if (M; �c) has robust performance,

then the system of Figure 9.1 has robust performance.

This result follows immediately from Theorem 9.1, and gives su�cient con-

ditions for robustness properties to hold for Figure 9.1 in terms of the

robustness properties of (M; �c). We note that by Theorem 9.2 robust

stability of (M11; �
c) actually implies the stronger condition of robust

L2e-stability of the feedback system.

Remark 9.6. We remark here that if our de�nition of stability for Fig-

ure 9.1 is modi�ed so that the system be tolerant to disturbances injected

directly into the loop between G and �, then robust stability of (M11; �
c)

would be a both necessary and su�cient condition for robust stability of

Figure 9.1. However in many cases such an added condition is not natural,

and in this sense our conditions may be conservative.

Having established Theorem 9.5 we see that by concentrating on the

robustness properties of (M; �c) we will guarantee the corresponding prop-

erties in the feedback con�guration of Figure 9.1. Henceforth in this section

we will focus our e�ort on the uncertain system (M; �c). The remainder

of this section is devoted to methods of analyzing robust stability and per-
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formance. As we will see, the results will be completely parallel to those on

robust well-connectedness in the previous chapter.

9.2.1 Robust stability under arbitrary structured uncertainty

We �rst consider the uncertainty structure

�a;c = fdiag(�1; : : : ;�d) : �k 2 L(L2);�k causal ; k�kk � 1g;
which is obtained by imposing causality on our class �a from Chapter

8. We will assume nominal stability, so M in Figure 9.2 will be a causal,

bounded LTI system.

The main result, stated below, tells us that robust stability can be studied

analogously to the corresponding robust well-connectedness problem. The

set � is the commutant set corresponding to�a, and is used here with the

new set �a;c. Also P� is the positive subset of �.

Theorem 9.7. Suppose that M is a causal, bounded LTI operator. Then

the following are equivalent:

(i) The uncertain system (M11; �a;c) is robustly stable;

(ii) The inequality inf
�2�

k�M11�
�1k < 1 holds.

Proof . The su�ciency direction (ii) implies (i), is essentially identical to

our work in Chapter 8. From the small-gain condition and the fact that

� commutes with � we have 1 > k�M11�
�1k � rad(�M11�

�1�) =

rad(M11�). Thus I �M11� must be nonsingular, and (I �M11�)
�1 is

causal by virtue of Proposition 9.4.

For the necessity direction (i) implies (ii), we can take advantage of

most of our work in x8.2.2. Referring back to this section, we see that the

following step, analogous to Proposition 8.9, is all that is required.

Proposition 9.8. Suppose that (M11; �a;c) is robustly stable. Then the

sets � and r are strictly separated, i.e.

d(�;r) := inf
r2�;y2r

jr � yj > 0:

In fact, given this proposition we can then follow the rest of x8.2.2, leading
to condition (ii). Proposition 9.8 stated above is proved in Appendix B. �

We now turn to time invariant uncertainty.

9.2.2 Robust stability under LTI uncertainty

For the case of LTI uncertainty we recall the de�nition of the structure

�TI from Chapter 8.

�TI = f� = diag(�1 : : : ;�d) 2 L(L2) : � time invariant and k�k � 1g:
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Now each � in �TI is LTI on the space of functions L2[0; 1). By Corol-

lary 3.27 we see that this immediately means that � must be causal. That

is, our LTI uncertainty set is already comprised of operators that are causal.

Having made this observation we can state the following theorem.

Proposition 9.9. Let M be a causal, bounded LTI system with transfer

function M̂ 2 RH1. Then the following are equivalent:

(i) The uncertain system (M11; �TI) is robustly stable;

(ii) The structured singular value condition sup
!2R

�(M̂11(j!); �s;f ) < 1 holds.

Proof . By Theorem 8.22 it is su�cient to show that robust well-

connectedness of (M11; �TI) is equivalent to robust stability. Since by

de�nition the latter condition implies the former we need only prove the

converse.

Thus we need to show that if I �M11� is nonsingular, where � 2�TI ,

then (I �M11�)
�1 is causal. This follows directly from frequency domain

analysis. The nonsingularity condition implies that (I�M̂(s)�̂(s) )�1 is in
H1, and thus by Corollary 3.27 we know it represents a causal operator.

�

Thus we see that if M is causal, robust stability of (M11;�TI) is

equivalent to robust well-connectedness; they both amount to a complex

structured singular value condition parametrized over frequency. Let us

move forward to robust performance.

9.2.3 Robust Performance Analysis

Having characterized robust stability, we now turn to the robust perfor-

mance problem for the con�guration of Figure 9.2, with the performance

measured by the induced norm of the map from w to z.

In Chapter 8 we explored a similar issue in the context of abstract L2 op-

erators, and saw how a restriction on the norm of �S(M;�) could be turned

into a robust well-connectedness problem with an augmented uncertainty

structure. We now see that the procedure carries through in the context of

causal uncertainties for the classes treated in the preceding sections.

Proposition 9.10. Suppose M is a causal LTI operator on L2[0; 1).

De�ne the perturbation set

�c

a;p
=

��
�u 0

0 �p

�
: �u 2�a;c; �p 2 L(L2) causal and k�pk � 1

�
:

The following are equivalent:

(a) The uncertain system (M; �a;c) satis�es robust performance: it is

robustly stable and k �S(M;�u)k < 1, for every �u 2�a;c.
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(b) The uncertain system (M; �c

a;p
) is robustly stable;

(c) There exists � 2 � such that
�
� 0

0 I

�
M

�
� 0

0 I

��1 < 1: (9.4)

Proof . The fact that (a) implies (b) follows analogously to Proposition 8.3

in Chapter 8. Here we have by hypothesis that (I �M11�u) has a causal,

bounded inverse, and the identity (8.2) can be written:�
I �M11�u �M12�p

�M21�u I �M22�p

�
=�

I 0

�M21�u(I �M11�u)
�1 I

� �
I �M11�u �M12�p

0 I � �S(M;�u)�p

�
By Proposition 9.4, the hypothesis implies that I � �S(M;�u)�p has a

causal, bounded inverse, so the same happens with I �M�.

The step from (b) to (c) is a direct application of Theorem 9.7, once we

recognize that the scaling set corresponding to �c

a;p
is

�p =

��
� 0

0 pI

�
: � 2 �; p 6= 0

�
and we realize that p can be normalized to one without loss of generality.

Finally to prove (c) to (a), �rst note that the top-left block of (9.4)

implies k�M11�
�1k < 1 and hence robust stability. Next, we rewrite (9.4)

in operator inequality form

	 :=M�
�
�0 0

0 I

�
M �

�
�0 0

0 (1� �)I

�
< 0;

where �0 = ��� and by continuity we may introduce a suitably small � > 0

in the bottom block.

Applying the signals q and w from Figure 9.2, we have

0 �
��

q

w

�
; 	

�
q

w

��
=

��
p

z

�
;

�
�0 0

0 I

� �
p

z

��
�
��

q

w

�
;

�
�0 0

0 (1� �)I

� �
q

w

��
=

dX
k=1

k(kpkk2 � kqkk2) + kzk2 � (1� �)kwk2

� kzk2 � (1� �)kwk2:
In the last step, the fact that qk = �kpk and k�kk � 1 was used. The

�nal inequality says that the map from w to z has induced norm less than

one. �

We now give an analogous result for the time invariant case.
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Proposition 9.11. Suppose the con�guration of Figure 9.2 is nominally

stable, and the uncertainty class is �TI . De�ne the perturbation set

�TI;p =

��
�u 0

0 �p

�
: �u 2�TI ; �p 2 L(L2) LTI, causal, k�pk � 1

�
:

Notice that �̂(s) takes values in �s;f+1 for any � 2 �c

TI;p
(i.e., there

is one extra full block with respect to the uncertainty structure �s;f ). The

following are equivalent:

(a) The uncertain system (M; �TI) satis�es robust performance: it is

robustly stable and k �S(M;�u)k < 1, for every �u 2�TI .

(b) The uncertain system (M; �TI;p) is robustly stable;

(c)

sup
!2R

�(M̂(j!); �s;f+1) < 1: (9.5)

The proof follows along similar lines as that of Proposition 9.10 and is left

as an exercise. Notice that here the so-called performance block �p can be

taken to be LTI.

This concludes our work on analysis of robust stability and performance

in causal feedback systems. We now turn our attention to the synthesis of

controllers.

9.3 Robust Controller Synthesis

In this section we tackle the problem of synthesizing feedback controllers

for robust performance in the presence of uncertainty. In other words,

going back to our original setup of Figure 9.1 our objective is to design

the controller K as in earlier chapters, however we are no longer satis�ed

with nominal stability and performance, but wish these properties to be

maintained throughout the uncertainty class �c.

As in previous sections, we will concentrate here on the L2-induced norm

from w to z as a measure of performance. The advantage of this choice is

that robust performance can be studied with completely analogousmethods

as robust stability. We thus focus our discussion on the robust stabilization

problem: given an LTI state space system G, and an uncertainty class �c,

�nd a controller K such that

� K internally stabilizes G;

� The uncertain system (M;�c) is robustly stable, where M :=

S(G;K).

We will only consider perturbation structures for which we have developed

the necessary analysis tools. In this way our problem turns into the search
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for a controller K that satis�es a precise mathematical condition. The

simplest case is when we have unstructured uncertainty, i.e. when

� = f� 2 L(L2);� causal ; k�k � 1g :

In this case a controller K will be robustly stabilizing if and only if it

satis�es

kS(G;K)k1 < 1;

this small-gain property follows, for instance, from our more general result

of Theorem 9.7. So our problem reduces to H1 synthesis; in fact, this

observation is the main motivation behind H1 control as a design method,

completing the discussion which was postponed from Chapter 7.

What this method does not consider is uncertainty structure, which as

we have seen can arise in two ways:

� Uncertainty models derived from interconnection of more simple

component structures.

� Performance block, added to account for a performance speci�cation

in addition to robust stability.

The remainder of this chapter is dedicated to the robust synthesis problem

under the structured uncertainty classes �a;c and �TI which we have

studied in detail.

9.3.1 Robust synthesis against �a;c

We begin our discussion with the class �a;c. Let K be the set of state

space controllers K which internally stabilize G. Then robust synthesis is

reduced, via Theorem 9.7, to the optimization problem

inf
�2P�;K2K

k� 1
2S(G;K)��

1
2 k;

which isH1 synthesis under constant scaling matrices; we have constrained

the latter to the positive set P�, which is a slight change from Theorem

9.7 but clearly inconsequential.

Robust stabilization is achieved if and only if the above in�mum is less

than one, since the set�a;c contains only contractive operators. We there-

fore have a recipe to tackle the problem. The main question is whether the

above optimization can be reduced to a tractable computational method.

Note that we have already considered and answered two restrictions of this

problem:

� For �xed � we have H1 synthesis;

� For �xed K we have robustness analysis over �a;c.
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As seen in previous chapters, both these subproblems can be reduced to

LMI computation, and the new challenge is the joint search over the matrix

variable � and the system variable K.

The �rst result is encouraging. It says that we can restrict our search for

a controller to those which have the same dynamic order as the plant.

Proposition 9.12. Let G be an LTI system of order n. If

inf
�2P�;K2K

k� 1
2S(G;K)��

1
2 k < 1; (9.6)

then there exits a controller K 2 K of order at most n, such that

k� 1
2S(G;K)��

1
2 k < 1:

The proposition states that if the the robust stabilization problem can be

solved, then it can be solved using a controller K of state dimension no

greater than the plant G. Figure 9.4 illustrates the constructions used in

the proof.

�
1
2 ��

1
2

G

K

G�

Figure 9.4. Scaled synthesis problem

Proof . Consider �, K satisfying (9.6). De�ning

G� :=

�
�

1
2 0

0 I

�
G

�
��

1
2 0

0 I

�
(see Figure 9.4) we have

�
1
2S(G;K)��

1
2 = S(G�;K):

Also G� has order n, so from Chapter 7 we know that the condition

kS(G�;K)k < 1

can be achieved with K of order no greater than n. �

Therefore we see that for purposes of robust synthesis over�a;c, we can

con�ne our attention to controllers of the order of the generalized plant
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G. In particular, our optimization problem is �nite, in the sense that it

involves a �nite set of variables, � and the controller state-space matrices

AK , BK , CK , DK of a �xed order. This is substantially simpler than the

problem we initially started with, namely arbitrary state space controllers

and uncertainties in an abstract operator space. One could search over this

�nite number of variables with a variety of computational tools.

Unfortunately this still does not mean that the problem is compu-

tationally tractable by the standards we have employed in this course,

namely problems which can be globally optimized in a moderate amount

of computational time, such as LMI optimization problems. Can a further

simpli�cation be achieved? To explore this issue it is natural to combine

our robust stability condition from x9.2.1, which resulted from robustness

analysis, with our LMI method for H1 synthesis described in Chapter 7.

This is done next.

We begin with a state-space realization for the generalized plant

Ĝ(s) =

24 A B1 B2

C1 D11 D12

C2 D21 0

35 ;
and incorporate the scalings �

1
2 and ��

1
2 to obtain

Ĝ�(s) =

24 A B1�
� 1

2 B2

�
1
2C1 �

1
2D11�

� 1
2 �

1
2D12

C2 D21�
� 1

2 0

35 :
Next, we apply Theorem 7.9 to obtain necessary and su�cient conditions

for the existence of a controller satisfying kS(G�;K)k1 < 1. These take

the form

�
NX 0

0 I

�� 24A�X +XA XB1�
� 1

2 C�1�
1
2

��
1
2B�1X �I ��

1
2D�11�

1
2

�
1
2C1 �

1
2D11�

� 1
2 �I

35�NX 0

0 I

�
< 0 ;

(9.7)�
NY 0

0 I

�� 24AY + Y A� Y C�1�
1
2 B1�

� 1
2

�
1
2C1Y �I �

1
2D11�

� 1
2

��
1
2B�1 ��

1
2D�11�

1
2 �I

35�NY 0

0 I

�
< 0 (9.8)

�
X I

I Y

�
� 0 (9.9)

where NX and NY are full-rank matrices whose images satisfy

ImNX = ker
�
C2 D21�

� 1
2

�
;

ImNY = ker
�
B�2 D�12�

1
2

�
:
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So we see that the robust stabilization problem is solvable if and only if

conditions (9.7), (9.8) and (9.9) in the variables X , Y and � are satis�ed.

This once again emphasizes the �nite dimensionality of the problem.

To get these conditions into a more transparent form, it is useful to

rede�ne the outer multiplication factors so that they are independent of �.

De�ne �NX , �NY to be full rank matrices whose images satisfy

Im �NX = ker
�
C2 D21

�
;

Im �NY = ker
�
B�2 D�12

�
:

Then �NX , �NY are constant, and clearly we can take

NX =

�
I 0

0 �
1
2

�
�NX ; (9.10)

NY =

�
I 0

0 ��
1
2

�
�NY : (9.11)

Substituting with (9.10) into (9.7) gives

�
�NX 0

0 I

�� 24A�X +XA XB1 C�1�
1
2

B�1X �� D�11�
1
2

�
1
2C1 �

1
2D11 �I

35� �NX 0

0 I

�
< 0:

As a �nal simpli�cation, we can multiply the last row and column of the

preceding LMI by �
1
2 . This gives the condition�

�NX 0

0 I

�� 24A�X +XA XB1 C�1�
B�1X �� D�11�
�C1 �D11 ��

35 � �NX 0

0 I

�
< 0: (9.12)

An analogous procedure combining (9.8) and (9.11) leads to

�
�NY 0

0 I

�� 24AY + Y A� Y C�1 B1�
�1

C1Y ���1 D11�
�1

��1B�1 ��1D�11 ���1

35� �NY 0

0 I

�
< 0: (9.13)

To summarize, we have now reduced robust stabilization to conditions (9.9),

(9.12) and (9.13). Condition (9.12) is an LMI on the variables X , �, but

unfortunately we �nd that (9.13) is an LMI on Y and ��1, not on �. This

means that the conditions, as written are not jointly convex on the variables

X , Y and �. Thus we have not been able to reduce robust synthesis to LMI

computation. In particular, examples can be given where the allowable set

of �-scalings is even disconnected.

Of course at this point we may wonder whether some further manip-

ulations and possibly additional changes of variables may not yield an

equivalent problem which is convex. No such conversion is known, but at

the time of writing no mathematical proof to the contrary is known ei-
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ther. However insights gained from computational complexity theory (see

remarks below) seem to indicate that such a conversion is impossible.

Since our approach does not provide a convex answer for the general

stabilization problem, the next question is whether there are special cases

where the conclusion is di�erent. Clearly if somehow we could get rid of one

of the two conditions (9.12) and (9.13), an LMI would result. One such case

is the so-called full information control problem where the measurements

are

y =

�
x

q

�
:

That is the controller has direct access to the states and all the outputs of

the uncertainty blocks. Here

C2 =

�
I

0

�
; D21 =

�
0

I

�
;

therefore the kernel of [C2 D21] is trivial, so the constraint (9.12) disappears

completely. Consequently the variable X can be eliminated and the robust

synthesis problem reduces to (9.13) and Y > 0, hence an LMI problem in

Y and ��1.
A dual situation which is also convex is the full control case, where

(9.13) disappears. A few other instances of simpli�cation in synthesis are

mentioned in the references at the end of the chapter. However these cases

are very special and in general robust design under structured uncertainty

remains a di�cult problem. An alternative viewpoint which reinforces

this conclusion, is work on bilinear matrix inequalities (BMIs): these are

feasibility problems of the form

f(X;Y ) < 0;

where f is matrix valued and bilinear in the variables X , Y . Our robust

synthesis problem can indeed be rewritten in this form, as is shown in the

references. This is unfortunately not very helpful, since BMIs do not share

the attractive computational features of LMIs; rather, the general BMI

problem falls in an intractable computational complexity class3.

Given this complexity we are led to consider heuristic methods for

optimization; these will be mentioned after discussing synthesis issues

associated with time invariant uncertainty.

9.3.2 Robust synthesis against �TI

We now turn our attention to the uncertainty class �TI . From the pre-

ceding theory the robust stabilization problem reduces in this case to the

3To be precise it is provably NP-hard, in the terminology of complexity theory.
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optimization

inf
K2K

sup
!2R

�
�
Ŝ(G;K)(j!); �s;f

�
:

This synthesis problem is however even harder than the one studied just

now in x9.3.1, since the function � to be optimized is di�cult to evaluate. In
other words we are starting with a weaker result from the analysis side, so

the addition of K can only make matters worse. For this reason the above

optimization is rarely attempted, and what usually goes by the name of �-

synthesis is the minimization based on the upper bound for the structured

singular value. This is the optimization

inf
K2K

sup
!2R

inf
�!2�s;f

��
�
�!Ŝ(G;K)(j!)��1

!

�
: (9.14)

If the above in�mum is made less than one, we have a robustly stabilizing

controller from the analysis theory. One should note, however, that except

for �-simple structures, the converse is not true, that is the previous method

might fail even when robust stabilization is achievable.

At this point we take the opportunity to discuss the relationship between

the above problem and the one obtained by using scaling operators from

�TI , namely

inf
K2K;�2�TI

k�̂Ŝ(G;K)�̂�1k1: (9.15)

This topic pertains in fact to the analysis problem for a �xed K, but has

been postponed from Chapter 8, since it is for the synthesis step that this

issue acquires the most relevance.

We will now argue that (9.14) and (9.15) give the same optimal value.

Clearly, if we �nd a controller K 2 K and � 2 �TI satisfying

k�̂Ŝ(G;K)�̂�1k1 < 1; (9.16)

then the answer to (9.14) will also be less than one, because we can always

pick �! = �̂(j!) 2 �s;f at each !.

What is less obvious is the converse implication. So suppose that we have

a �xed stabilizing controller K and a family of matrix scalings �! 2 �s;f
satisfying

sup
!2R

��
�
�!Ŝ(G;K)(j!)��1

!

�
< 1;

or equivalently the LMI form

M̂(j!)���
!
�!M̂(j!)� ��

!
�! � ��I for all ! 2 R;

where � > 0 and we have setM = S(G;K). Notice that ��
!
�! is an element

of P�s;f for each !, i.e. it is a positive matrix and has the block structure

of �s;f .
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Now a topological argument, outlined in the exercises at the end of the

chapter, shows that since M̂(s) is in RH1, then in the above ��
!
�! can be

replaced by a rational function �̂(j!), satisfying:

� �̂(j!) 2 RL1.

� �̂(j!) = �̂(j!)� 2 P�s;f for all !.

� For a �xed � > 0,

M̂(j!)��̂(j!)M̂(j!)� �̂(j!) � ��I for all ! 2 R:

What remains to be done, in order to show the equivalence of the two

bounds, is a spectral factorization step where one writes

�̂(j!) = �̂(j!)��̂(j!)

with �̂(s) 2 H1, and �̂(s) 2 �s;f for each s in the right half-plane. This

�nal step follows by observing that each of the diagonal blocks of �̂(j!) is

lower bounded by �I at every frequency, and invoking the following result.

Proposition 9.13. Given a rational function Q̂ 2 RL1, such that

Q̂(j!) > �I > 0 for all !, then there exists F̂ 2 RH1, with F̂�1 2 RH1,

such that

F̂ (j!)�F̂ (j!) = Q̂(j!) holds for all ! 2 R: (9.17)

This spectral factorization theorem is covered in the exercises of Chapter 7.

Invoking this result for each block, we construct the desired �̂(s) 2 RH1,
with �̂(s) 2 �s;f . In other words �̂ represents an operator in �TI . Now the

inequality

M̂(j!)��̂(j!)��̂(j!)M̂(j!)� �̂(j!)��̂(j!) � ��I for all ! 2 R:

implies that k�̂M̂ �̂�1k1 < 1 as required.

Remark 9.14. In the above process we have in fact learned about the

structure of the positive scaling set P�TI which goes along with the

commutant �TI . We recall from x8.3 that such set is de�ned by

P�TI = f� 2 L(L2) : � = ~��~�; ~� 2 �TIg;
and we remarked there that such sets are not always contained in the cor-

responding commutant. Here, in fact, operators in P�TI are self-adjoint

over L2[0;1), so in general they are not LTI; in other words they are not

represented by a transfer function in H1, except when they are memoryless.

Now the above factorization provides in e�ect a representation for mem-

bers of P�TI in terms of transfer functions in L1. To be more precise, the

operator �0 = ��� 2 L(L2) that corresponds to � 2 �TI would be given by

�0 = P+�
���
L2[0;1)
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where � is the LTI operator on L2(�1;1) associated with the L1 func-

tion �̂(j!) = �̂(j!)��̂(j!), and P+ is the projection from L2(�1;1) to

L2[0;1).

We are now in a position to return to the controller synthesis problem,

which we have reformulated as (9.15); further note from the above argument

that we can restrict the attention to rational scaling functions; explicitly

our optimization problem is to in�mize

k�̂Ŝ(G;K)�̂�1k1 (9.18)

over the stabilizing controllers K 2 K, and scaling functions �̂ 2 RH1
with �̂�1 2 RH1 and �̂(s) 2 �s;f for every s.

As expected from the discussion in the previous section, this robust syn-

thesis problem is di�cult as well, and we will not be able to provide a

computationally tractable solution to the optimization4. Thus we are led

to consider heuristic algorithms which search for a minimum, without global

guarantees; the most commonly used one, known as D-K Iteration, will be

introduced in the next section.

As a further complication, in the case of (9.18) we will not be able to

bound a priori the order of the optimizing controller. To discuss this, sup-

pose we knew the correct scaling function �̂(s) and it had order nd. Then

�̂(s)�1 can be realized with the same order and we see from an analogous

argument to that in Proposition 9.12 that the controller order need not be

greater than n+2nd. However there is no way to know the required nd: this

issue will become more transparent once we look at the typical methods

for searching for scaling functions.

Suppose we have a �xed controller K and thus a �xed M̂ = Ŝ(G;K) 2
RH1. There are two main ways of �nding a scaling �̂ which satis�es (9.16):

(a) Frequency-by-frequency analysis plus curve �tting: In this alterna-

tive, for a given M we minimize, at each !

��
�
�̂(j!)M(j!)�̂(j!)�1

�
over �̂(j!). For example we can check for the feasibility of the LMI

M̂(j!)��̂(j!)M̂(j!)� 2�̂(j!) < 0; (9.19)

and search over . In practice this is done over a discrete grid of fre-

quencies. Subsequently, a curve �tting step is done to �nd a rational

�(s) that approximately satis�es (9.17). The tighter the approxima-

tion, the higher order of �(s) which will be required, and the step

gives no guarantees for frequencies between grid points.

(b) Basis function approach: Here �̂(j!) is constrained a priori to lie on

a certain �nite dimensional space of transfer functions, for instance

4Some results exist for special cases; see the chapter references.
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one can take

�̂(j!) = �̂(j!)��̂(j!) =
�
(j!I �A�)

�1

B�

��
Q

�
(j!I �A�)

�1

B�

�
where A� and B� are �xed and Q is allowed to vary. Endowing A�,

B� and Q with appropriate spatial structure, a family of transfer

functions �̂(j!) 2 P�s;f is parametrized, as discussed in the exer-

cises. It is also shown there how the search over �̂ in this family

satisfying (9.19) over frequency, can be reduced to state-space LMI

computation.

This method involves some conservatism over the unconstrained scal-

ings �̂(j!); as a counterpart, the frequency search and curve-�tting

is avoided.

More details on both approaches are given in the references at the end

of the chapter. Having reviewed these approaches, we see that in both the

order of the scaling (determined either by the curve-�tting step or by the

order of the basis expansion) can be chosen to be arbitrarily high. Unless

some result could be given showing we need not go higher than a certain

bound, there will no bound on the resulting nd and thus on the order of

the optimizing controller. No such result exists, and in fact examples show

that approximating the in�mum in our optimization may indeed require

controllers of arbitrary high order.

We are now ready to move on to a design heuristic.

9.3.3 D-K iteration: a synthesis heuristic

In the previous two sections we have seen that robust synthesis for our

standard setup in Figure 9.1 can be recast as the �nding the in�mum of

k�S(G;K)��1k

where K ranges over the stabilizing class K, and � ranges over:

� the set of constant matrices � for the case of uncertainty in �a;c.

� the set of rational functions in �TI for uncertainty in �TI;c.

We have also mentioned that this is not in general solvable by convex,

�nite dimensional methods. This reality leads us to consider heuristic al-

gorithms, and this section is devoted to introducing the most commonly

used approach which is termed D-K iteration. The idea is to split the prob-

lem of robust synthesis, which we cannot solve, into two simpler problems

which we can solve. The two simpler problems are (a) synthesizing an H1
controller; and (b) �nding a scaling that in�mizes a scaled gain. We have

the following algorithm, which di�ers for each of these problems only in

the set from which � is chosen.
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1. Set �1 = I , �0 =1 and the counter k=1;

2. Solve for Kk in the H1 synthesis infKk
k�kS(G; Kk)�

�1
k
k; let �k

denote the achieved norm.

3. Compare �k with �k�1; if these are approximately equal stop, and set
K = Kk as the �nal controller. Otherwise continue to next step.

4. Solve for �k+1 in the scaled gain problem

inf
�k+1

k�k+1S(G;Kk)�
�1
k+1k;

increment k and go to step 2.

This is the D-K iteration algorithm, which is so named because the scaling

variable � is often denoted by D, and thus the algorithm iterates between

�nding solutions for D and K. Starting with the trivial scaling � = I , the

algorithm begins by performing an H1 synthesis in step (2); later in step

(4) a new scaling � is found, which can be chosen from either � or �TI
depending on which type of uncertainty is involved. Then these scalings

are included for a new H1 synthesis; the algorithm stops when there is no

signi�cant improvement in the scaled norm.

What are the properties of this algorithm? First the achieved perfor-

mance �k at any step forms a nonincreasing sequence up to the tolerance

employed in the in�mization steps (an exercise). Also if we are dealing with

the uncertainty set �a;c the scaling �k is a constant matrix, and therefore

the controller Kk is never required to have order larger than that of G. In

contrast, when dealing with the uncertainty set �TI we must �nd ratio-

nal scalings by any of the two methods discussed in x9.3.2; in general the

scaling �k may need to be of arbitrarily high order, and thus so must Kk.

Now notice that the scaled problem always involves the original generalized

plant G; this means that the �k are modi�ed, not accumulated, in the pro-

cess. Therefore if we impose a restriction on the order of the scalings to be

�t, this automatically forces our algorithm to search only over controllers

up to a certain order.

However there is no guarantee that this process converges to the global

minimum, in fact not even to a local minimum: the iteration can get \stuck"

in values which are minima with respect to each variable separately, but

not for both of them at a time. This kind of di�culty is not surprising given

the lack of convexity of the problem. Consequently these methods should

be viewed as ways of searching the controller space to improve an initial

design, rather than global solutions to the robust synthesis problem.
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9.4 Exercises

1. Complete the discussion in x9.1.2 by providing the details for the

proof of Proposition 9.3. Also show that if S and S�1 are causal and
in L(L2), then their extensions to L2e preserve the inverse.

2. Small gain and nonlinearity. Consider the static function

f(x) =

(
1
2
x for jxj � 1;

0 for jxj < 1:

Clearly, jf(x)j � 1
2
x so f has small gain. If I is the identity, is the

function I � f invertible?

3. Prove Proposition 9.11.

4. Consider the robust synthesis problem under a constant scaling � and

static state feedback, i.e.

Ĝ(s) =

24 A B1 B2

C1 D11 D12

I 0 0

35
and K(s) = F , a static matrix. Show that the search for F and �

reduces to a bilinear matrix inequality (BMI) condition in the vari-

ables F and (X;�), where X is a square state space matrix as in the

KYP lemma.

5. Show that the sequence �k in the D-K iteration of x9.3.3 is nonin-

creasing. Thus the performance of the controllers Kk generated by

the algorithm will improve, or remain unchanged, as the iteration

proceeds.

6. Basis function approach to uncertainty scalings.

a) Consider the scalar transfer function

�̂(j!) = �0 + �1
1

1 + j!
+ ��1

1

1� j!
+ �2

1

1 + !2
;

which is real valued for every !. Find �xed A0, B0, and Q a�ne

in (�0; �1; �2), so that

�̂(j!) =

�
(j!I �A0)

�1

B0

��
Q

�
(j!I �A0))

�1

B0

�
: (9.20)

b) Discuss how to modify the previous construction to describe:

(i) A spatially structured matrix

�̂(j!) = �0 +�1

1

1 + j!
+��1

1

1� j!
+�2

1

1 + !2
;

(ii) Terms of higher order in 1
1+j!

and its conjugate.
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c) Given a scaling �̂(j!) of this form (9.20), and

M̂(s) =

�
A B

C D

�
;

�nd �xed matrices A, B and a matrix 	, a�nely dependent on

Q, such that

M̂(j!)��̂(j!)M̂(j!)� �̂(j!) =�
(j!I �A)�1

B

��
	

�
(j!I �A)�1

B

�
:

d) Explain how to reduce condition (9.19) to an LMI.

7. Comparison of frequency scaling approaches.

a) Suppose that a rational scaling from �TI is required to minimize

the gain k�S(G; K)��1k subject to the constraint of having

a �xed maximum order. Can both of the frequency scaling

methods of x9.3.2 guarantee that such a solution will be found?

b) Discuss the computational tradeo�s between the two methods.

8. Continuous frequency scalings.

Given M̂ 2 RH1 we wish to show that if there exists a family of

matrices �! 2 P�s;f such that

M̂(j!)��!M̂(j!)� �! � ��I for all ! 2 R;

then such a �! exists which is continuous on ! 2 R [ f1g. A sketch

of a proof is provided below, �ll in the details.

a) At each frequency �! in R [ f1g, there exist a �xed matrix

��! 2 P�s;f and an open interval I�! containing �!, such that

M̂(j!)���!M̂(j!)� ��! for all ! 2 I�! .

b) Using the matrices and intervals from a) show that there exist a

�nite number of intervals Ik and matrices �k 2 P�s;f such that

M̂�(j!)�kM̂(j!)� �k < 0 for all ! 2 Ik , and

[N
k=1Ik = R [ f1g holds.

c) From this show that the desired function �!, continuous in R [
f1g can be constructed.

Note: it is a fact that any bounded function �! which is continuous

on R [ f1g can be approximated as closely as desired by a function

in RL1. This proves the claim made in x9.3.2 when arguing that

rational scalings � 2 �TI can always be constructed.
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Notes and references

The input-output perspective for the study of stability for possibly nonlin-

ear or time varying systems goes back to the 1960, in particular to [151] on

the small gain theorem, and the absolute stability theory of [100, 146]. Stan-

dard references on this early theory, in particular covering the nonlinear

case, are [15] and [142]. The case of structured perturbations was already

considered in [146], but mostly gained attention in the late 70s [113]. The

emphasis up to this point was on su�cient conditions; for subsequent work

on necessity of small-gain conditions including nonlinear nominal plants,

see [121] and references therein. As mentioned before, necessity theorems

for the structured case were developed in [70, 80, 122].

The fact that robust performance problems could be reduced to robust

stability by addition of a �ctitious block is from [27]. The D �K iteration

for robust synthesis was proposed in [29], including curve-�tting in the

D-step; the alternative basis function approach is from [114].

The observation that full-information and full-control problem gives

convex robust synthesis is due to [91]. Other special problems with this

property include the \rank one" case studied in [106], and problems where

uncertainty is represented by a certain type of L2 constraints [19]. Also the

synthesis for robust sensitivity under additive LTI uncertainty has been

reduced in [154, 87] to a convex, yet in�nite dimensional problem. A recent

survey of the BMI approach for the general (non-convex) case is [83].
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Further Topics: Analysis

10.1 Analysis via Integral Quadratic Constraints

In previous chapters we pursued the modeling of uncertain systems in terms

of spatially structured perturbation balls, and developed the corresponding

methods for robustness analysis. It should be clear by now that the above

modeling strategy is general enough to handle a wide variety of situations

by manipulating the structure of these operator parametrizations. The cor-

responding robustness analysis conditions take the form of generalizations

of the small gain theorem.

Other strategies are, however, available for this class of problems. A

popular alternative has been, for example, to make system passivity (see

a de�nition below) the central concept instead of contractiveness, which

leads to parallel robustness analysis tools. While it is not di�cult to

convert from one framework to the other by suitable (linear fractional) re-

parametrizations, the question arises as to whether one can give a uni�ed

viewpoint that would directly cover the available robustness analysis meth-

ods. The recently developed framework of analysis via integral quadratic

constraints not only provides this but has also led to useful generalizations

of the classical methodologies.

We have already incorporated some elements of this framework in our

presentation of the previous chapters, namely when we exploited quadratic

forms over L2 as a tool to recast some of the robustness analysis condi-

tions. To point the way to the generalizations to follow, we will �rst revisit

these results giving a slightly di�erent perspective. The next step will be
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to generalize the method to arbitrary quadratic characterizations of uncer-

tainty, and develop robustness analysis theorems that go along with these

characterizations. Finally, at the end of the section we address the question

of computation of the resulting analysis conditions.

We begin by recalling from Chapter 8 that the uncertainty set �a was

characterized by the relation

Ra =

��
p

q

�
2 L2 � L2 : q = �p; for some � 2�a

�
=

��
p

q

�
2 L2 � L2 : kEkpk � kEkqk; k = 1; : : : ; d

�
;

where Ek =
�
0 � � � 0 I 0 � � � 0

�
. Introducing the quadratic forms

 k

�
p

q

�
= kEkpk2 � kEkqk2;

the above can be expressed as

Ra =

��
p

q

�
2 L2 � L2 :  k

�
p

q

�
� 0; k = 1; : : : ; d

�
:

Notice that the forms  k map L2�L2 ! R, which is slightly di�erent from

our �k's from Chapter 8. We can also rewrite these quadratic forms as

 k

�
p

q

�
= h
�
p

q

�
;	k

�
p

q

�
i

with

	k =

�
E�
k
Ek 0

0 �E�
k
Ek

�
:

Now let us combine the constraints in the  k by means of multipliers k > 0.

We de�ne

 

�
p

q

�
:=

dX
k=1

k k

�
p

q

�
= h
�
p

q

�
;	

�
p

q

�
i

where the matrix

	 =

dX
k=1

k	k =

�
� 0

0 ��

�
; (10.1)

and we recall that

� =

dX
k=1

kE
�
k
Ek = diag(1I; : : : ; dI)

is an element of P�, the set of positive scaling matrices from earlier

chapters.
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From the above discussion, for any p q related by q = �p, � 2 �a we

have the inequality

 

�
p

q

�
� 0: (10.2)

Next we turn our attention to the robustness analysis results. It was

shown in the previous chapters that the feasibility of the operator inequality

M��M � � < 0

for � 2 P�, is necessary and su�cient for robust well-connectedness of

(M;�a), and also for robust stability of (M;�a;c) when M is causal.

The above condition is easily rewritten as�
M

I

�� �
� 0

0 ��

� �
M

I

�
< 0;

which means that�
q;

�
M

I

�� �
� 0

0 ��

� �
M

I

�
q

�
� ��2kqk2;

or equivalently that

 

�
Mq

q

�
� ��kqk2 for every q 2 L2: (10.3)

Notice that the set

RM :=

��
Mq

q

�
: q 2 L2

�
� L2 � L2

is the relation or graph de�ned by the operator M .

Consequently we can interpret the above results in geometric terms inside

the space L2 � L2. Condition (10.3) speci�es that the relation RM lies in

the strict negative cone de�ned by the quadratic form  , whereas (10.2)

states that the uncertainty relation Ra lies in the non-negative cone. Thus

the two relations are quadratically separated by the form  .

The results of Chapters 8 and 9 imply that the robust well-connectedness

of (M;�a) (respectively the robust stability of (M;�a;c)) is equivalent to

the existence of 	 of the form (10.1) such that the resulting form  provides

this quadratic separation.

What happens with the analysis over�TI? While the exact (and di�cult

to compute) structured singular value tests are of a di�erent nature, its

convex upper bound has indeed the same form.

Let 	 be an LTI, self-adjoint operator on L2(�1;1), characterized by

the frequency domain L̂1 function

	̂(j!) =

�
�̂(j!) 0

0 ��̂(j!)

�
;
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where �̂(j!) 2 P�s;f , corresponding to the spatial structure �s;f of �TI .

The quadratic form

 (v) = hv;	vi = 1

2�

Z 1

�1
v̂(j!)�	̂(j!)v̂(j!)d!

is thus de�ned on L2(�1;1), and can in particular be restricted to

L2[0;1). In particular we will have

 

�
p

q

�
� 0

whenever q = �p and � 2�TI . Also, the L1 condition

k�̂(j!) 12 M̂(j!)�̂(j!)�
1
2 k1 < 1

is once again equivalent to (10.3). So here we can also interpret the above

convex analysis test in terms of quadratic separation. Notice that in this

case the test is only su�cient.

The above discussion suggests a generalization of our procedure: instead

of constraining ourselves to 	's of the above special structure, what if we

are allowed complete freedom in our search for a quadratic form? In other

words we pose the question of �nding a suitable 	 that satis�es (10.2) over

our uncertainty set �, and (10.3) over our nominal system. If such a 	 is

found, we might have a general means of establishing robustness properties

of the (M;�) system. We give the following de�nition.

De�nition 10.1. Let 	 be a self-adjoint operator on L2�L2. The uncer-
tainty set� is said to satisfy the integral quadratic constraint (IQC) de�ned

by 	 if for every p, q in L2 related by q = �p, � 2�, the inequality

 

�
p

q

�
=

��
p

q

�
;	

�
p

q

��
� 0:

is satis�ed.

Remark 10.2. In the preceding de�nition 	 is allowed to be any self-

adjoint operator. However the typical situation is that the form  is time

invariant on L2, i.e.  (v) =  (S�v) for every positive shift S� . Such forms

can be written as

 (v) =
1

2�

Z 1

�1
v̂(j!)�	̂(j!)v̂(j!)d! � 0;

for a certain L̂1 function 	̂(j!), which helps explain the \IQC" terminol-

ogy.

We now look at di�erent examples of uncertainty properties that can be

encompassed by IQCs, in addition to the structured contractiveness which

was studied above.
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Examples:

Consider the matrix

	 =

�
0 I

I 0

�
:

A component q = �p satisfying

 

�
p

q

�
= 2Rehp; qi � 0

for every q 2 L2 is called passive; this property arises naturally in physical

(electrical, mechanical) modeling.

Now suppose � is a scalar, time varying real parameter, q(t) = �(t)p(t).

Then for any anti-Hermitian matrix � = ��� we haveZ 1

0

�
p(t)

q(t)

�� �
0 �

�� 0

��
p(t)

q(t)

�
=

Z 1

0

�(t)[p(t)���p(t) + p(t)��p(t)]dt = 0;

so � satis�es the IQC de�ned by

	 =

�
0 �

�� 0

�
:

If in addition we have the contractiveness condition j�(t)j � 1, it follows

easily that � satis�es the IQC de�ned by

	 =

�
� 0

0 ��

�
for any matrix � > 0. Now one can always superimpose two IQCs, so we

�nd that a contractive, time-varying parameter gain always satis�es the

IQC de�ned by

	 =

�
� �

�� ��

�
:

Finally, assume the parameter is real, contractive, and also constant over

time (LTI). Then it follows analogously that the component q = �p satis�es

the IQC de�ned by

	̂(j!) =

�
�̂(j!) �̂(j!)

�̂(j!)� ��̂(j!)

�
:

for any bounded �̂(j!) = ��̂(j!)� and �̂(j!) > 0. �

As a �nal remark on the modeling aspect, we have not imposed any

a priori restrictions on the allowable choices of IQC; to be interesting,

however, they must allow for a rich enough set of signals. For instance a

negative de�nite 	 will only describe the trivial set (p; q) = 0. Furthermore

this example shows that arbitrary IQCs need not respect the restriction

that the variable p is free, which is implicit in any model of the operator
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form q = �p. While a departure from our traditional operator viewpoint

might indeed have interest, in what follows we will assume that our IQCs

are models for some set � of operators.

10.1.1 Analysis results

Having introduced IQC descriptions of uncertainty, we are now ready to

pursue the generalization of our robustness analysis work based on IQCs.

The following discussion refers to the setup of Figure 10.1, relevant to

robust well-connectedness or robust stability questions. We assumeM and

� are bounded operators on L2[0;1). While robust performance problems

can also be included in this setup, they will not be discussed here; interested

readers can consult the references at the end of the chapter.

M

�
p q

qMq

d

Figure 10.1. Setup for robustness analysis

We will assume we have found an IQC satis�ed on the uncertainty (i.e.

 is non-negative on the relation de�ned by�), and such that  is strictly

negative on the relation RM , as in (10.3), reproduced here for convenience:

 

�
Mq

q

�
� ��kqk2 for every q 2 L2: (10.4)

The �rst obvious consequence is that both relations have trivial

intersection: if q = �p and p =Mq, then

0 �  

�
p

q

�
=  

�
Mq

q

�
� ��kqk2

and therefore q must be zero. So if d = 0 the only L2 solutions to the

diagram of Figure 10.1 are p = 0, q = 0. Equivalently, ker(I �M�) = f0g;
however, something slightly stronger can be said.
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Proposition 10.3. Suppose � is described by the IQC  

�
p

q

�
� 0, and

that (10.4) holds. Then there exists a constant � > 0 such that

kpk � �k(I �M�)pk
holds for every p 2 L2.
To prove this result we will rely on the following Lemma about quadratic

forms on L2.

Lemma 10.4. Let  (v) = hv;	vi, where 	 2 L(L2). Then there exists a

constant �, depending only on 	, such that any z, v in L2 satisfying

 (z) � 0;  (v) � �kvk2;
will satisfy the inequality

�kz � vk � kzk:
Proof . We �rst write the identity

 (z)�  (v) = hv;	(z � v)i+ h(z � v);	vi+ h(z � v);	(z � v)i;
that leads to the inequality

kvk2 �  (z)�  (v) � 2k	k kvk kz � vk+ k	k kz � vk2: (10.5)

Separately, we �nd � large enough so that

0 � 1

2
kvk2 � 2k	k kvk kz � vk+ �2kz � vk2: (10.6)

In fact one can take � =
p
2k	k (depending only on 	) which makes the

above a perfect square. Now combine (10.5) and (10.6) and obtain

1

2
kvk2 �

�
�2 + k	k

�
kz � vk2

which is a bound of the form kvk � Ckz � vk. Finally, from the triangle

inequality we have

kzk � kvk+ kz � vk � (C + 1)kz � vk;
which is the desired bound with � := C + 1. �

We now return to the proof of Proposition 10.3.

Proof . To use the above lemma set

z =

�
p

q

�
; v =

�
Mq

q

�
:

By hypothesis we know that  (z) � 0, and

 (v) =  

�
Mq

q

�
� ��kqk � � �

1 + kMk2 kvk
2:
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This means we are in the hypothesis of Lemma 10.4 if we normalize 	

by a constant factor (dependent on � and M). Therefore we can �nd � =

�(	; �;M) such that

kpk �
� p

q

� � �

� p

q

�
�
�
Mq

q

� = �kp�Mqk = �k(I �M�)pk:

�

The above result provides an important �rst step for robustness analysis

with IQCs. It tells us that the mapping (I �M�) is injective over L2, and

that the inverse mapping de�ned on Im(I �M�) has a norm bound of

�. However this still falls short of establishing that the inverse is de�ned

over all of L2 (i.e. that the mapping is surjective), which would be required

to state that (M;�) is robustly well-connected. The following example

illustrates this di�culty.

Example:

Suppose M is the constant gain M = 2, and � is the LTI system with

transfer function

�̂(s) =
s� 1

s+ 1
:

It is easy to see that � is isometric, so kpk = kqk whenever q = �p.

Therefore � satis�es, for example, the IQC

 

�
p

q

�
= �kpk2 + 2kqk2 � 0:

corresponding to

	 =

�
�I 0

0 2I

�
:

Also it is clear that

 

�
Mq

q

�
= �4kqk2 + 2kqk2 � �2kqk2;

Applying Proposition 10.3 we see that

kpk � �k(I �M�)pk
for some constant � (it is easily veri�ed here that � = 1 su�ces). However

Q := I �M� has transfer function

Q̂(s) =
3� s

s+ 1

and does not have a bounded inverse on L2[0;1). In fact it is easy to see

that the operator Q, while injective, is not surjective, since the Laplace

transform of any element in its image must belong to the set

fv̂(s) 2 H2 : v̂(3) = 0g:



306 10. Further Topics: Analysis

In fact the above subspace of H2 exactly characterizes the image of Q. �

The above discussion implies that in addition to separation of the graphs

of M and � by an IQC, some additional property is required to prove

the invertibility of I �M�. For the speci�c IQCs considered in previous

chapters, this stronger su�ciency result was provided by the small-gain

theorem. We seek an extended argument to establish this for a richer class

of IQCs. The solution discussed below is to assume that the uncertainty set

is closed under linear homotopy to � = 0. Before making this precise, we

state a property about the image of operators such as those in the previous

proposition.

Lemma 10.5. Suppose Q 2 L(L2) satis�es
�kQpk � kpk

for all p 2 L2. Then ImQ is a closed subspace of L2.

Proof . Take a sequence Qpn which converges to z 2 L2. Then Qpn is a

Cauchy sequence so kQpn � Qpmk < � holds for su�ciently large n, m.

Now applying the hypothesis we �nd

kpn � pmk � ��

so pn is also a Cauchy sequence, hence pn ! p 2 L2. By continuity of Q,

Qpn ! Qp and therefore z = Qp is in the image of Q. �

We can now state the main result.

Theorem 10.6. Suppose the set � is such that if � 2 �, then �� 2 �

for every � 2 [0; 1]. If � satis�es the IQC de�ned by 	, and (10.4) holds,

then (M;�) is robustly well-connected, i.e. I �M� is invertible over �.

Proof . Fix � 2�. Given Proposition 10.3, it su�ces to show that I�M�

is surjective, because in that case it follows that (I �M�)�1 exists and

has norm bounded by �.

Let us suppose that Im(I �M�0�) = L2 for some �0 2 [0; 1]. The key

step is to show that the property is maintained when �0 is replaced by �

satisfying

j� � �0j �
1

�kMk k�k : (10.7)

Before proving this step, we note that it su�ces to establish our result.

Indeed, in that case we can begin at � = 0, where Im(I) = L2 trivially,

and successively increment the value of � by the above steps, which are

constant, independent of the current � . In a �nite number of steps we will

cover the interval � 2 [0; 1].

We thus focus on the perturbation argument for a given �0, and �

satisfying (10.7). By contradiction, suppose

Im(I �M��)
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is a strict subspace of L2. Since it is closed by Lemma 10.5, then by the

projection theorem it has a non-trivial orthogonal complement. Namely we

can �nd a function v 2 L2, kvk = 1, such that

h(I �M��)p; vi = 0 for all p 2 L2:
Now observe that

(I �M�0�) = (I �M��) +M(� � �0)�

therefore

h(I �M�0�)p; vi = hM(� � �0)�p; vi for all p 2 L2: (10.8)

Since I �M�0� is surjective we can �nd p0 satisfying

(I �M�0�)p0 = v;

and furthermore such p0 has norm bounded by �. Substitution into (10.8)

gives

1 = hv; vi = hM(� � �0)�p0; vi � kMk j� � �0j k�k � < 1;

which is a contradiction. Therefore I�M�� must be surjective as required.

�

We have thus obtained a fairly general robust well-connectedness test

based on IQCs; the extra condition imposed on the uncertainty set � is

quite mild, since one usually wishes to consider the nominal system (� = 0)

as part of the family, and thus it is not too restrictive to impose that the

segment of operators ��, � 2 [0; 1] also keep us within �. The reader

can verify that this is true with the IQC models presented in the above

examples.

An important comment here is that we have only shown the su�ciency

of this test for a given IQC. When studying the uncertainty set �a in

Chapter 8 we showed as well that the method is non-conservative, in the

sense that if the system is robustly well-connected this fact can always be

established by an IQC of the form 	 =

�
� 0

0 ��

�
with � 2 P�. Notice

that such family of IQCs is obtained as the conic hull of a �nite number of

time invariant IQCs (	k considered at the begin of the section), and the

uncertainty set is rich enough to be characterized exactly by such family.

Only in such quite rare situations can one expect necessity theorems to

hold; this subject will not be pursued further here.

Having discuss well-connectedness, we now turn our attention to the

question of robust stability of the con�guration of Figure 10.1, understood

as establishing a relationship in the extended space L2e. The following is a

simple immediate corollary of Theorem 10.6.

Corollary 10.7. Suppose the hypothesis of Theorem 10.6 hold, and that

M and the uncertainty class � are well de�ned over L2e. Suppose further
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that I�M� is invertible as a mapping in L2e for � 2�. Then the system

(M;�) is robustly stable.

Proof . Since (I �M�)�1 is assumed to be well de�ned over L2e, it only

remains to establish boundedness over L2. But this follows directly from

Theorem 10.6. �

The most common situation in which the conditions of the above corol-

lary can be satis�ed, is whenM and� are taken to be causal, and I�M�

has a causal inverse overL2e; the IQC analysis comes in as a way of ensuring

boundedness over L2.

As a �nal remark in this section, we note that we have developed the

theory exclusively for linear operators M and �, in tune with the style

of this course. In fact the analysis applies, with minor modi�cations to

nonlinear components; in a sense, IQCs provide a more sophisticated tool

to \cover" nonlinearities than the sector bounds that we used to motivate

our uncertainty �a. For nonlinear formulations of the analysis, as well as

application examples of IQCs for some common nonlinearities, we refer the

reader to the references at the end of the chapter.

10.1.2 The search for an appropriate IQC

A question we have not yet addressed explicitly is how one �nds an IQC

to satisfy the assumptions of the above theory, namely to quadratically

separate the relation RM from the uncertain relation. The success of the

method as an analysis technique clearly hinges on this question.

There are two aspects to the above issue:

1. How to �nd IQCs that describe a given uncertainty set �.

2. How to search, among the above class, one IQC that satis�es (10.4)

and hence quadratic separation.

The �rst question cannot have a general purpose answer, since it depends

strongly on how the uncertainty set � is presented to us; in particular it

may be more or less easy to extract, from the problem formulation, a valid

family of IQCs, as was done for instance in the examples of the previous

section.

What is true in general, however, is that the set of 	 which describe a

given relation R (i.e. which are non-negative over

�
p

q

�
2 R), is always a

convex cone: if 	1 and 	2 are valid IQCs for R, then so is

�1	1 + �2	2

for any �1 � 0, �2 � 0. Similarly, condition�
M

I

��
	

�
M

I

�
< 0 (10.9)
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is convex in 	. Therefore the search for an IQC is a (possibly in�nite

dimensional) convex feasibility condition over 	.

In more practical terms, one usually considers a family of known IQCs

for the relevant uncertainty class �, described by some free parameters;

this is potentially a subset of all the valid IQCs. Then one searches over the

set of parameters to �nd one that satis�es (10.9). If successful, the search

is over; if not, it is conceivable that a richer \catalog" of IQCs may be able

to solve the problem.

How is such a parametrization of IQCs obtained? Clearly, one can be

generated from any �nite set 	1; : : : ;	d of valid IQCs, by means of the

relevant convex cone. Sometimes, however, as in the example of scalar pa-

rameters discussed above, a matrix parameter such as � = ��� or � > 0

is more convenient. In some cases, most notably for LTI uncertainty, one

disposes of an in�nite family of IQCs characterized in the frequency domain

by

	̂(j!) 2 S	

at every !. In this case we have the same options that were discussed in

Chapter 9: either keep the parametrization in�nite dimensional, or restrict

it to a �nite dimensional space of transfer functions by writing

	̂(j!) =

�
(j!I �A	)

�1

B	

��
Q

�
(j!I �A	)

�1

B	

�
(10.10)

where A	 and B	 are �xed and impose the structure of the relevant set

S	, and Q is a free matrix parameter. The latter form can fairly gener-

ally accommodate a �nite parametrization of a family of self-adjoint, LTI

operators.

The two options are distinguished when we address the second basic

question, namely the search for an IQC satisfying (10.9). Assuming M is

LTI, the frequency domain alternative is to impose

�
M̂(j!)

I

��
	̂(j!)

�
M̂(j!)

I

�
� �� for all !;

which in practice implies a one-dimensional gridding approach.

For �nite parametrizations of the form (10.10), the search for the param-

eter Q reduces to a state-space LMI by application of the KYP Lemma, as

discussed in the exercises of Chapter 9.

So we see that given a family of IQCs that satisfy the uncertainty, the

search for an appropriate one to establish robust stability can be handled

with our standard tools. Thus we have an attractive general methodology

for a variety of robustness analysis problems.
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10.2 Robust H2 Performance Analysis

In Chapter 8 we introduced a language for the characterization of system

uncertainty, based on uncertainty balls in the L2-induced norm. This pro-

cedure led naturally to conditions for robust stability analysis based on H1
norms of the nominal system, which in fact constitute the main motivation

for the use of H1 norms in control theory. When treating the problem of

system performance, it was shown in Chapter 9 how a disturbance rejection

speci�cation in the H1 norm could be imposed with the same methods as

robust stability analysis.

Other than this mathematical convenience, however, the motivation for

H1 norms in disturbance rejection problems is often not very strong. An

H1 criterion measures the e�ect of the worst case adversary in a game

where we know nothing about the spectral content of the disturbance.

As argued in Chapter 6, very commonly one has available information on

the disturbance spectrum, that leads more naturally to an H2 measure of

performance.

In short, H1 norms are largely motivated by robustness, and H2 norms

by disturbance rejection. Is there are suitable compromise for robust per-

formance problems? This has been a long-lasting problem, that goes back

to the question of robustness of LQG regulators studied since the late 1970s

(see the references). We will present two approaches for this \Robust H2"

problem. While the picture is not as tight as for H1 performance, we will

see that similar tools can be brought to bear for this case.

-

�

� �

�

M21

M11

M22

M12
qp

z w

Figure 10.2. Setup for Robust H2 analysis.

Throughout the section we will consider the uncertain system of Figure

10.2. The nominal map M is taken to be a �nite dimensional LTI system

with state-space realization

_x = Ax +Bqq +Bww

p = Cpx+Dpqq

z = Czx+Dzqq
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with no feed-through terms for the input w. The uncertainty operator �

will be of the block structured class

�a = fdiag(�1; : : : ;�d) : �k 2 L(L2); k�kk � 1g
considered in Chapter 8, or the time-invariant subset �TI . We will also

consider the causal classes�a;c and�TI;c . The robust well-connectedness

(respectively robust stability for the causal case) of the interconnection will

be assumed.

For LTI uncertainty, the robust H2 performance analysis problem is to

evaluate

sup
�2�TI

k �S(M;�)k2;

where �S(M;�) is the closed loop map from w to z, and we recall the

de�nition

kĜk22 =
1

2�

Z 1

�1
TrfĜ(j!)�Ĝ(j!)gd!: (10.11)

Unfortunately the above supremum is di�cult to compute; this is not un-

expected since the analysis of robust stability alone is already a structured

singular value problem which we have seen is hard. Thus we are led to

seek convex upper bounds for this supremum, similarly to the procedure

we followed in Chapter 8, using the set of scaling matrices

P� = f� 2 Rm�m : � = diag(1Im1
; : : : ; dImd

); k > 0g:

We will also study such bounds for the perturbation class �a; here the

above de�nition of the H2 norm does not apply; we will discuss some

possible generalizations in the sequel.

10.2.1 Frequency domain methods and their interpretation

In this section we will study a frequency domain characterization of robust

H2 performance, that is closely related to our work in Chapter 8. Consider

the optimization

Problem 10.8. Find Jf ;TI := inf
R1
�1Tr(Y (!))d!

2�
, subject to �(!) 2 P�

and

M̂(j!)�
�
�(!) 0

0 I

�
M̂(j!)�

�
�(!) 0

0 Y (!)

�
� 0 8 !: (10.12)

This is an in�nite dimensional convex optimization problem, consisting of

the minimization of a linear objective subject to a family of LMI constraints

over frequency.
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In fact the LMI (10.12) is very closely related to the upper bounds for

the structured singular value: if we replace Y (!) by 2I in (10.12), we

would impose the robust H1 performance speci�cation that the worst-

case gain of �S(M;�), for LTI perturbations, across every frequency and

spatial direction is bounded by .

Here we have added a slack variable Y (!) that allows such gain to vary,

provided that the accumulated e�ect over frequency and spatial direction

is minimized, reecting an H2-type speci�cation. For LTI uncertainty, this

argument is easily formalized.

Theorem 10.9. Suppose the system in Figure 10.2 is robustly well-

connected over the class �TI . Then

sup
�2�TI

k �S(M;�)k22 � Jf ;TI:

Proof . Consider a �xed frequency !; by introducing signals q̂(j!) , ŵ(j!)

we obtain from (10.12) the inequality�
q̂(j!)

ŵ(j!)

���
M̂(j!)�

�
�(!) 0

0 I

�
M̂(j!)�

�
�(!) 0

0 Y (!)

���
q̂(j!)

ŵ(j!)

�
� 0;

that can be expanded into

jẑ(j!)j2 +
dX

k=1

k(!)jp̂k(j!)j2 � ŵ(j!)�Y (!)ŵ(j!) +
dX

k=1

k(!)jq̂k(j!)j2;

using the signal conventions of Figure 10.2. Since � is time-invariant, and

contractive we have jp̂k(j!)j � jq̂k(j!)j, so k(!) > 0 implies that

jẑ(j!)j2 � ŵ(j!)�Y (!)ŵ(j!):

Now, ẑ(j!) = [ �S(M;�)(j!)]ŵ(j!), so

ŵ(j!)�
�
�S(M;�)(j!)� �S(M;�)(j!)� Y (!)

�
ŵ(j!) � 0

holds for any ŵ(j!). Therefore we conclude that the preceding matrix is

negative semide�nite and in particular

Trf �S(M;�)(j!)� �S(M;�)(j!)g � Tr(Y (!)):

Using de�nition 10.11, we have

k �S(M;�)k22 �
Z 1

�1
Tr(Y (!))

d!

2�
:

Taking supremum over � and in�mum over Ŷ , we complete the proof. �

The preceding proof is remarkably simple and close in spirit to the meth-

ods of the structured singular value theory. In an analogous manner, we

can study the conservatism of this bound. Not surprisingly, this issue is
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related to whether the associated uncertainty structure is �-simple or not,

but there are other issues as well. We state the following result.

Proposition 10.10. Assume that the number of blocks d � 2, and that

the signal w is scalar. Then

sup
�2�TI

k �S(M;�)k22 = Jf ;TI:

The proof of this result is a standard application of the structured sin-

gular value theory. Since ŵ is scalar, so is Y (!), and it can be identi�ed as

the worst-case gain of �S(M;�)(j!) at that particular frequency, using the

classi�cation of �-simple structures. We leave details as an exercise.

Having identi�ed the non-conservative case, we will now comment on the

sources of conservatism in the general case:

� Non �-simple structures. Clearly as the number of blocks increases,

we expect a similar conservatism as the one we have in the structured-

singular value.

� Multivariable noise. As we see in the preceding proof, we are impos-

ing the matrix bound �S(M;�)(j!)� �S(M;�)(j!) � Y (!) as a way

of constraining their traces. Examples can be given showing this is

conservative.

� Causal uncertainty. As we have seen, for the robust stability question

it is natural to consider causal perturbations. This information, how-

ever, is not used in the preceding bound. We will discuss this issue in

more detail below.

In view of these limitations, it is natural to inquire what exactly is

the bound Jf ;TI computing in regard to this problem. It turns out that

frequency domain conditions can be interpreted as tests for white noise re-

jection in a worst-case perspective, as explained below. This approach will

apply as well to the case of arbitrary structured uncertainty �a; in that

case the conditions will involve the use of constant uncertainty scalings

� 2 P�, analogously to the situation of previous chapters. In particular,

we will consider the modi�ed problem

Jf ;a := inf

Z 1

�1
Tr(Y (!))

d!

2�
; subject to � 2 P� and

M̂(j!)�
�
� 0

0 I

�
M̂(j!)�

�
� 0

0 Y (!)

�
� 0 8 !: (10.13)

We now outline the set-based approach to white noise rejection, that

is directly tailored to the robustness analysis problem. By treating both

noise and uncertainty from a worst-case perspective, exact characteriza-

tions can be obtained. At �rst sight, this proposition may seem strange

to readers accustomed to a stochastic treatment of noise; notice, however,

that a stochastic process is merely a model for the generation of signals
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with the required statistical spectrum, and other models (e.g. determinis-

tic chaos) are possible. Here we take the standpoint that rather than model

the generating mechanism, we can directly characterize a set of signals of

white spectrum, de�ned by suitable constraints, and subsequently pursue

worst-case analysis over such set.

One way to do this for scalar L2 signals is to constrain the cumulative

spectrum by de�ning the set

W�;B :=

�
w 2 L2 : min

�
�

�
� �;

B

�
� �

�
�
Z

�

��
jŵ(j!)j2 d!

2�
� �

�
+ �

)
;

(10.14)

0

0

kwk2

B

Figure 10.3. Constraints on the accumulated spectrum

This approach is inspired in statistical tests for white noise that are com-

monly used in the time series analysis literature. The constraints, depicted

in Figure 10.3, impose that signals in W�;B have approximately unit spec-

trum (controlled by the accuracy � > 0) up to bandwidth B, since the

integrated spectrum must exhibit approximately linear growth in this re-

gion. Notice that this integrated spectrum will have a �nite limit as � !1,

for L2 signals, so we only impose an sublinear upper bound for frequencies

above B.

Having de�ned such approximate sets, the white noise rejection measure

will be based on the worst-case rejection of signals in W�;B in the limit as

� ! 0, B !1:

k �S(M;�)k2;wn := lim
�!0

B!1
sup

w2W�;B

k �S(M;�)wk2:

For an LTI system under some regularity assumptions, k�k2;wn can be shown
to coincide with the standard H2 norm; see the references for details. The

method can be extended to multivariable noise signals, where the compo-
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nents are restricted to have low cross-correlation. Notice that the preceding

de�nition can apply to any bounded operator, even nonlinear.

We are now ready to state a characterization of the frequency domain

test.

Theorem 10.11. Suppose the system in Figure 10.2 is robustly well-

connected over the class �a. With the above de�nitions,

Jf ;a = lim
�!0

B!1
sup

w2W
�;B

�2�a

k �S(M;�)wk22:

The proof of this result involves extending the \S-procedure" method

employed in Chapter 8, to accommodate the additional constraints on the

signal spectrum. Notice that the constraints (10.14) are indeed IQCs in

the signal w, although in contrast to the situation of Chapter 8, we have

an in�nite family of them. Thus the proof is based on a convex duality

argument in in�nite dimensional space; for details see the references. An

additional comment is that the characterization remains true if �a is

replaced by the causal subset �a;c.

We remark that a similar interpretation can be given to the cost function

Jf ;TI, as a test for robust performance over white noise sets in the sense

de�ned above, for uncertainty of arbitrarily slow time variation. This also

parallels results available for H1-type performance; references are given at

the end of the section.

In summary, by using the worst-case interpretation of white noise re-

jection, which in itself entails some conservatism, we are able to obtain a

parallel theory to the one obtained in the previous chapters for the H1
performance measure.

We end the discussion on these frequency domain characterizations with

a few remarks on the computational aspect. Problem 10.8 is in�nite dimen-

sional as posed, however we note that the problem decouples over frequency,

into the minimization of Tr(Y (!)) subject to (10.12) at each �xed fre-

quency. This decoupling can be exploited to build practical approximation

tools, that complement the design tools of �-analysis.

If � is constant as in (10.13) the problem is coupled across frequency.

However in this case the it can be reduced exactly to a �nite dimensional

state-space LMI optimization.
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Proposition 10.12. Jf ;a = inf Tr(Z), subject to24 AX� +X�A� +Bp�B
�
p

�
X�C�q X�C

�
z

��
CqX�
CzX�

�
�
�
� 0

0 I

� 35 < 0;

24 AX+ +X+A
� +Bp�B

�
p

�
X+C

�
q
X+C

�
z

��
CqX+

CzX+

�
�
�
� 0

0 I

� 35 < 0;

�
Z B�

v

Bv X+ �X�

�
> 0:

A proof is provided in the references at the end of the chapter. Here we

will turn our attention to an alternative state-space method.

10.2.2 State-Space Bounds Involving Causality

The above frequency domain methods have been interpreted as picking the

worst among possible \white" disturbances. Now we will present a di�erent

bound, that is obtained by focusing on impulse response interpretation of

the H2 norm, but in addition applies to average case white noise rejection.

As we will see, in these interpretations the causality of � plays a larger

role.

We state a second convex optimization problem, this time based on the

state space description. To simplify the formulas we will assume that Dpq

and Dzq are zero, but the general case can be treated similarly.

Problem 10.13. Find Js;a := inf Tr(B�
w
XBw), subject to X > 0, � 2

P�, and �
A�X +XA+ C�

p
�Cp + C�

z
Cz XBq

B�
q
X ��

�
� 0:

To interpret this problem, we de�ne another generalization of the H2

norm for time-varying operators. Recall from Chapter 6 that, for LTI

systems, the H2 norm is equal to the sum of the energies of the output

responses corresponding to impulses applied at each input channel. This

leads to the following de�nition for arbitrary operators:

k �S(M;�)k22;imp
:=

mX
k=1

kzkk22;

where zk = �S(M;�)�k, and �k is the Dirac impulse applied at the k-th

input. We have the following result.
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Theorem 10.14. Suppose the system of Figure 10.2 is robustly stable

against the ball �a;c of structured, contractive, causal operators. Then

sup
�2�a;c

k �S(M;�)k22;imp
� Js;a:

Proof . The �rst observation is that the e�ect of the impulse at the i-th

input is to \load" an initial condition x0 = Bwei in the system, which

subsequently responds autonomously. Here ei denotes the i-th coordinate

vector in Rm . For this reason we �rst focus on the problem for �xed initial

condition and no input,

J(x0) := sup
�2�a;c;x(0)=x0

kzk22:

We now write the bound

J(x0) � sup
p2L2[0;1);kp̂

k
k2
2
�kq̂

k
k2
2

x(0)=x0

kzk22

� inf
k>0

sup
q2L2[0;1)

 
kzk22 +

dX
k=1

k(kp̂kk22 � kq̂kk22)
!
: (10.15)

In the �rst step the k-th uncertainty block is replaced by the Integral

Quadratic Constraint kp̂kk22 � kq̂kk22; this constraint would characterize

the class of contractive (possibly non-causal) operators. However by re-

quiring p 2 L2[0;1), we are imposing some causality in the problem by

not allowing p to anticipate the impulse. This does not, however, impose

full causality in the map from q to p, hence the inequality.

Secondly, we are bounding the cost by using the Lagrange multipliers

k > 0 to take care of the constraints. It is straightforward to show the

stated inequality. This step is closely related to the \S-procedure" method

explained in Chapter 8 when studying the structured well-connectedness

problem. In that case we showed the procedure was not conservative; in fact,

a slight extension of those results can be used to show there is equality in

the second step of (10.15).

To compute the right hand side of (10.15), observe that for �xed k we

have

sup
q2L2[0;1)

Z 1

0

�
x(t)�(C�

p
�Cp + C�

z
Cz)x(t) � q(t)��q(t)

�
dt: (10.16)

This is a linear-quadratic optimization problem, whose solution is closely

related to our work in H2 control and the KYP Lemma. We refer to the

exercises of Chapter 7 for the main ideas behind the following Proposition.

Proposition 10.15. If the H1 norm condition�� 1
2 0

0 I

�
M

�
��

1
2

0

�
1
< 1
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holds, then the optimal value of (10.16) is given by

x�0Xx0;

where X is the stabilizing solution of the Algebraic Riccati Equation

A�X +XA+ C�
p
�Cp + C�

z
Cz +XBq�

�1B�
q
X = 0:

Furthermore, this solution X is the minimizing solution of the LMI�
A�X +XA+ C�

p
�Cp + C�

z
Cz XBq

B�
q
X ��

�
� 0: (10.17)

Notice that the above LMI is the same as the one considered in Problem

10.13. To apply this result, �rst notice that the norm condition is�� 1
2M11�

� 1
2

��
1
2M21

�
1
< 1:

Given the robust stability assumption, we know by Theorem 8.12 in Chap-

ter 8 that the norm of the top block can be made less than one by

appropriate choice of �. Now since � can be scaled up, the norm of the bot-

tom block can be made as small as desired, yielding the required condition,

and thus the feasibility of (10.17).

Now we wish to combine the solution X with the minimization over �.

Here is where the LMI (10.17) is most advantageous, since it is jointly a�ne

in � and X . We have

J(x0) � inf
X;�>0 satisfying (10.17)

x�0Xx0;

that is a convex optimization problem.

The �nal step is to return to the sum over the impulses applied at the

input channels:

k �S(M;�)k22;imp
=

mX
i=1

k �S(M;�)�ik22

�
mX
i=1

J(Bwei) (10.18)

�
mX
i=1

inf
X;�>0 satisfying (10.17)

e�
i
B�
w
XBwei (10.19)

� inf
X;�>0 satisfying (10.17)

mX
i=1

e�
i
B�
w
XBwei (10.20)

= inf
X;�>0 satisfying (10.17)

Tr(B�
w
XBw)

= Js;a:
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In the above chain of inequalities, (10.18) comes from �nding the worst-case

� for each initial condition (they need not be the same across i), (10.19) is

the previous derivation, and (10.20) results from exchanging the sum with

the in�mum. �

The previous result focuses on the H2 norm as a measure of transient

performance; we immediately wonder if the same bound applies to the other

notions that were used to motivate the H2 norm, in particular in regard to

the rejection of stationary white noise. It can, in fact, be shown that

sup
�2�a;c

k �S(M;�)k22;aov � Js;a;

where

k �S(M;�)k22;aov := lim sup
T!1

1

T

Z
T

0

Ejz(t)j2dt

is the average output variance of the time-varying system when the input

is stochastic white noise. This bound can be derived from Theorem 10.14,

using the fact that k �S(M;�)k2;aov equals the average of the impulse re-

sponse energy as the impulse is shifted over time; see the references for

this equivalence. Alternatively, a stochastic argument can be given using

Ito calculus to show directly this bound; the references contain the main

ideas of this method, that also applies to nonlinear uncertainty. Notice,

however, that in these interpretations we can only prove a bound, not an

exact characterization as was done with Jf ;a.

We end the discussion of this method by explaining how the bound can

be re�ned in the case of LTI uncertainty. Returning to the proof we would

consider in this case frequency depending scalings k(!), and write

J(x0) � sup
q2L2[0;1);jp̂

k
(j!)j2�jq̂

k
(j!)j2

x(0)=x0

kzk22

� inf
k(!)>0

sup
q2L2[0;1)

 
kzk22 +

dX
k=1

Z 1

�1
k(!)(jp̂k(j!)j2 � jq̂k(j!)j2)d!

!
:

(10.21)

However at this level of generality the restriction q 2 L2[0;1) (related

to causality) is not easily handled. The only available methods to impose

this are based on state-space computation, for which the k(!) must be

constrained a priori to the span of a �nite set of rational basis functions.

We will not pursue this here (see the references), but remark that in this

way one generates a family of optimization costs JN
s;TI

of state dimension

increasing with number of elements in the basis, in the limit approaching

the optimization (10.21); we will have more to say about this below.
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10.2.3 Comparisons

We have shown two alternative methods to approach the robust H2 perfor-

mance problem; we end the section with a few remarks on the comparison

between them. For simplicity, we focus on the case of scalar disturbances

w.

We �rst discuss perturbations in �a and state the following relation-

ships:

sup
�2�a;c

k �S(M;�)k22;imp
� sup

�2�a

k �S(M;�)k22;imp

� lim
�!0

B!1
sup

w2W
�;B

�2�a

k �S(M;�)wk22 (10.22)

= lim
�!0

B!1
sup

w2W
�;B

�2�a;c

k �S(M;�)wk22 = Jf ;a:

The �rst inequality is clear; (10.22) follows from the fact that the impulse

(or more exactly, an L2 approximation) is always an element of the \white"

set W�;B . The equalities with W�;B were stated before.

Notice that the previous inequality does not transparently relate Jf ;a and

Js;a, since we only know that Js;a is an upper bound for the �rst quantity.

Nevertheless, we have the following:

Proposition 10.16. Js;a � Jf ;a.

Proof . The exercises provide a direct proof based on the state-space ver-

sion of Jf ;a. Here we will give a more insightful argument for the case of

scalar w. Notice that in the case of a scalar impulse, x0 = Bw and the right

hand side of (10.15) is directly Js;a. Rewriting (10.15) in the frequency

domain we have

inf
�

sup
q2L2[0;1)

1

2�

Z 1

�1

"
jz(j!)j2 +

dX
k=1

k(jpk(j!)j2 � jqk(j!)j2)
#
d!:

Now, introducing the slack variable Y (!) to bound the above integrand we

can rewrite this problem as the minimization of
R1
�1 Y (!)d!

2�
subject to

jz(j!)j2 +
dX

k=1

k(jpk(j!)j2 � jqk(j!)j2) � Y (!)

for all q̂(j!) in the H2, Fourier image of L2[0;1). Now, since w(t) = �(t)

we have �
p̂(j!)

ẑ(j!)

�
= M̂(j!)

�
q̂(j!)

1

�
;

which translates the previous inequality to�
q̂(j!)

1

���
M̂(j!)�

�
� 0

0 I

�
M̂(j!)�

�
� 0

0 Y (!)

���
q̂(j!)

1

�
� 0:
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Now we have an expression that closely resembles Problem 10.8; if q̂(j!)

were allowed to be any frequency function, the inequality would reduce to

(10.12) and the two problems would be equivalent. However the constraint

q̂(j!) 2 H2 that embeds some causality in Problem 10.13 will lead in

general to a smaller supremum. �

We remark that examples can be given where the inequality in

Proposition 10.16 is strict.

An interesting consequence of the above proof is that for scalar w, there

is equality in (10.22). In fact if we remove the causality constraint in the

previous derivation, the result is exactly Jf ;a. This means that the impulse

can be taken as the worst-case \white" disturbance when we allow for

non-causal uncertainty.

A few more comments are in order regarding the role of causality. As

remarked before, if we are considering the worst-case white noise problem,

the cost does not change by the causality restriction; what happens is

that the signal achieving this cost ceases to be the impulse. When dealing

directly with the impulse response norm, or with average case stochastic

noise, then causality of � does indeed a�ect the cost, and in this case Js;a
provides a tighter bound.

Finally, we discuss the comparison for the case of LTI uncertainty. Notice

that here we have an unambiguous H2 norm we are trying to compute, for

which both approaches provide bounds.

In this regard, once again we �nd that removing the restriction q 2
L2[0;1) from (10.21) will lead to the result Jf ;TI, but that there is a gap

between the two. This would mean that if the uncertainty set is �TI;c,

the state-space approach could in principle give a tighter bound. Notice,

however, that we do not have a Js;TI bound, only a family JN
s;TI

obtained

by basis expansions of order N for the frequency varying scalings. This

means that while

inf
N

JNs;TI � Jf ;TI;

we know nothing about the situation with a given, �nite N . This is par-

ticularly relevant since the computational cost of state space LMIs grows

dramatically with the state dimension, in contrast with a more tractable

growth rate for computation based on Problem 10.8.

10.2.4 Conclusion

In summary, we have presented two approaches to the Robust H2 perfor-

mance problem, and discussed their interpretation. The two methods are

not equivalent; one o�ers a tighter characterization of causal uncertainty,

the other the bene�t of frequency domain interpretation and computation.

A rare feature of H1 theory has been the complete duality between two

ways of thinking, one based on state-space and linear-quadratic optimiza-
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tion, the other on operator theory and the frequency domain. After two

decades of research, the robust H2 problem has found these two faces but

not achieved the same unity: LQG does not quite adapt to the world of

robustness.

Notes and References

The method of Integral Quadratic Constraints has its roots in the absolute

stability theory of [100, 146], in particular on the use of the S-procedure

[147] for nonlinear control. However the extensive use of quadratic sepa-

ration for robustness analysis appeared only very recently in the work of

[80, 82, 108, 81]. In addition to the input-output viewpoint presented here,

connections to state-space theory such as Lypunov functions for nonlinear

analysis can be given [107].

The question of robustness in H2 control goes back to the late 70s, a

time when \modern control theory" was put to the test of robustness. In

particular H2 (LQG) regulators were studied from the point of view of

classical stability margins [115], but found to o�er in general no guarantees

[22]. This motivated e�orts to reconcile LQG with classical concepts [25,

26, 125]. However at the same time (early 80s) the H1 paradigm was

being put forth [152], that more easily blended with classical concepts and

quickly became the centerpiece of multivariable control, since it allowed a

transparent combination of performance and robustness [27].

Nevertheless, the impression has remained that the H2 metric is more

appropriate for system performance. A new opportunity for a better treat-

ment of its robustness came in the late 80s, with the discovery of close ties

between the state-space methods of H2 and H1 control [24]. In particu-

lar the multi-objective H2/H1 control design problem has received wide

attention, a few of the many references are [10, 71, 156, 120].

Concentrating on robust H2 performance analysis, the state-space

method we presented for robustH2 performance originates in [127, 98, 156],

although the presentation in terms of LMIs is more recent [61]; the exten-

sion to LTI perturbations is due to [35]. The frequency domain method

and the worst-case white noise interpretation are developed in [93, 94]. In

particular [94] contains the state-space computation for Jf ;a. The results

on characterization of Jf ;TI as a test for slowly-varying uncertainty, as well

as the extensions to causal perturbations, are found in [92]. More extensive

details on these and other approaches, as well as many more references can

be found in the survey chapter [95].
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11

Further Topics: Synthesis

We have arrived at the �nal chapter of this course. As with the preceding

chapter our main objective is to acquire some familiarity with two new

topics; again our treatment will be of a survey nature. The two areas we

will consider are linear parameter varying systems, and linear time varying

(LTV) systems. The previous chapter considered advanced analysis, our

aim in this chapter is synthesis.

Up to this point in the course we have worked entirely with systems and

signals of a real time variable, namely continuous time systems, however

in this chapter we will instead consider discrete time systems. One reason

for this is that the concepts of the chapter are more easily developed and

understood in discrete time. This change also gives us the opportunity to

reect on how our results in earlier parts of the course translate to discrete

time.

The basic state space form of a discrete time system is given below.

xk+1 = Axk +Bwk x0 = �0 (11.1)

zk = Cxk +Dwk:

This system is described by a di�erence equation with an initial state con-

dition �0, and these replace the di�erential equation and initial condition

we are accustomed to in continuous time. Thus every matrix realization

(A; B; C; D) speci�es both a discrete time system, and a continuous time

system. We will only use discrete time systems in this chapter.

Before starting on the new topics we briey digress, and de�ne the space

of sequences on which the systems discussed in this chapter will act. We use
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`n2 (N) to denote the space of square summable sequences mapping the non

negative integers N to Rn . This is a Hilbert space with the inner product

hx; yi`2 =
1X
k=0

x�
k
yk:

The space `n2 (N) is the discrete time analog of the continuous time space

Ln2 [0; 1). We will usually write just `2 when the spatial dimension and

argument are clear.

11.1 Linear parameter varying and

multidimensional systems

So far the controllers we have aimed to synthesize have been pure state

space systems. Here we will extend our state space framework to cover a

broader class of systems. This extension will allow us to incorporate both

linear parameter varying (LPV) systems and multidimensional systems

into a common setting, with performance guarantees during synthesis.

z

x

w

A B

C D

�1In1 0
. . .

0 �dInd

Figure 11.1. NMD system

The new set of state space systems that we introduce are shown in Fig-

ure 11.1. The picture shows the upper star product between two systems.

The upper system is spatially diagonal, and the lower system ismemoryless.
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Each of the blocks in the upper system is written �iIni which means

�iIni =

264�i 0
. . .

0 �i

375 2 L(`ni2 );

for some operator �i on `
1
2(N). In words the operator �iIni is just the spa-

tially diagonal operator formed from ni copies of the bounded operator �i.

For reference we call the operators �i scalar-operators, because they act on

scalar sequences. Here (A; B; C; D) is simply a set of state space matri-

ces; de�ne n such that A 2 Rn�n and therefore n1 + � � � + nd = n holds.

Referring to Figure 11.1, let us set

� =

264�1In1 0
. . .

0 �dInd

375 (11.2)

for convenient reference. Therefore we have the formal equations

xk = (�Ax)k + (�Bw)k (11.3)

zk = Cxk +Dwk

describing the interconnection. We use (�Ax)k to denote the k-th element

of the sequence given by �Ax; note that since the state space matrix A

has no dynamics (Ax)k = Axk in this notation. Here w 2 `2 and we

de�ne this system to be well-posed if I � �A is nonsingular. Thus there

is a unique x 2 `2 which satis�es the above equations when the system is

well-posed. Now the map w 7! z is given by C(I � �A)�1�B + D and

is rational in the operators �1; : : : ; �d when they commute. However these

operators �i do not commute in general, and we therefore call these types

of systems noncommuting multidimensional systems, or NMD systems for

short. NMD systems can be used to model numerous linear situations, and

we now consider some examples.

Examples:

First we show that our standard state space system can be described in

this setup. Let Z denote the shift operator, or delay, on `2. That is, given

x = (x0; x1; x2; : : : ) 2 `2 we have
Zx = (0; x0; x1; : : : ): (11.4)

We will not distinguish between shifts that act on `2 of di�erent spatial

dimension. Therefore, given a sequence x 2 `n2 we have

Zx =

264Zx
(1)

...

Zx(n)

375 =

264Z 0
. . .

0 Z

375
264x

(1)

...

x(n)

375 ; for x partitioned as

264x
(1)

...

x(n)

375 2 `n2 :
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Namely Z acts independently on every scalar sequence x(i) comprising the

vector sequence x; so it is spatially diagonal. Now by setting � = Z we see

that the above system is exactly of the form in (11.3)

Our next example involves varying parameters. Suppose we have a sys-

tem whose state space realization depends on the real scalar parameters

�1k; : : : ; �rk which vary with respect to the discrete time parameter k; the

variation with k may not be known a priori. Let ( ~A(�); ~B(�); ~C(�); ~D(�) )

be the realization, where � signi�es the dependence on the �i. If the de-

pendence of each of the matrices is rational in the parameters �i, then it is

frequently possible to convert this system to the form in (11.3) with �1 = Z

and �2 = �1; �3 = �2; : : : ; �r+1 = �r, for some state space realization of

constant matrices (A; B; C; D). See the Chapter 8 exercises.

For our third example let us consider a multidimensional system in two

independent variables k1 and k2. The state equation for such a system

follows. �
�xk1+1; k2
x
k1; k2+1

�
=

�
A11 A12

A21 A22

� �
�xk1; k2
x
k1; k2

�
+

�
B1

B2

�
wk1; k2 :

Now suppose that w 2 `2(N�N). Then let Z1 and Z2 be the shift operators
on the variables k1 and k2 respectively. By setting

� =

�
Z1 0

0 Z2

�
this system can immediately be converted to the form in (11.3). Clearly this

construction can be extended to any multidimensional system with inputs

and states in `2(N � � � � � N). Furthermore with some additional technical

considerations, systems with inputs in the space `2(N�� � ��N�Z�� � ��Z)
can also be treated; see the references for details. �

The examples above provide motivation for the use of this model, and

has a clear analogy to the full block uncertainty introduced in Chapters 8

and 9 We will say more about these ties later.

De�ne the set of operators

� = f� 2 L(`2) : � is diagonal as in (11.2), and satis�es k�k`2!`2
� 1g:

This is the set of contractive operators that have the diagonal form in

(11.2). We de�ne X to be the set of positive symmetric matrices in the

commutant of � by

X = fX 2 Sn : X > 0 and X� = �X , for all � 2�g:
Therefore every element of X has the block-diagonal form

X =

264X1 0
. . .

0 Xd

375 ; (11.5)
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where each Xi 2 Sni and is positive. We are now ready to state a ma-

jor result pertaining to NMD systems. The following theorem mirrors the

continuous time, full block uncertainty case of Theorem 8.12.

Theorem 11.1. The operators I ��A and C(I ��A)�1B +D are non-

singular and contractive respectively, for all � 2 �, if and only if there

exists X 2 X such that�
A B

C D

�� �
X 0

0 I

��
A B

C D

�
�
�
X 0

0 I

�
< 0:

This theorem provides a necessary and su�cient condition for such a NMD

system to be both well-posed and contractive with respect to the �xed set

�. We remark that this condition remains exact when �1 is �xed to be

the shift Z. Thus it is exactly the scalar-operator-times-identity version of

Theorem 8.12 in discrete time; see also the exercises in Chapter 8 for a

starting point for proving this theorem.

The pure LMI test given above is also reminiscent of the KYP lemma,

howeverX is now structured. The result in Theorem 11.1 a�ords the oppor-

tunity to develop synthesis methods directly for NMD systems. Synthesis

is the topic of the next subsection, after which we discuss realization theory

for models of this type.

11.1.1 LPV synthesis

We now look at a synthesis problem associated with NMD systems. This

is commonly known as LPV synthesis because of the example given above

using varying parameters. This problem has a direct connection with gain

scheduling, as well as synthesis for systems with both temporal and spatial

variables. After posing the synthesis problem we will show its application

to gain scheduling.

The arrangement for the synthesis problem is shown below in Fig-

ure 11.2, and corresponds to our standard synthesis problem, but now the

constituent systems are NMD systems. In the setup we have an NMD sys-

tem G(�1; : : : ; �d), which is given and dependent on the scalar-operators

�1; : : : ; �d. The aim is to synthesize an NMD controller K(�1; : : : ; �d) in

terms of the same scalar-operators. Using the variables shown in the �gure,

the equations which describe the plant are

xk = (�Ax)k +

�
�
�
B1 B2

� �w
u

��
k

(11.6)�
zk
yk

�
=

�
C1

C2

�
xk +

�
D11 D12

D21 0

��
wk
uk

�
;
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G(�1; : : : ; �d)

K(�1; : : : ; �d)

wz

y

u

Figure 11.2. NMD synthesis con�guration

for given state space matrices (A; B; C; D), where

� =

264�1In1 0
. . .

0 �dInd

375 :
These are the analogous equations to those we began with in H1 synthesis.

Similar to this the controller equations are

�xk = ( �� �A�x)k + ( �� �By)k (11.7)

uk = �C�xk + �Dyk;

with

�� =

264�1I�n1 0
. . .

0 �dI�nd

375 :
We de�ne the state dimensions of the plant and controller respectively to

be n and �n, so that A is n � n, the matrix �A is �n � �n, and therefore the

partition dimensions satisfy

dX
k=1

ni = n and

dX
k=1

�ni = �n:

The synthesis goal is to �nd suitable matrices ( �A; �B; �C; �D), where the

dimension �n can be chosen freely as can the partitioning �n1; : : : ; �nd re-

specting the condition �n1 + � � � + �nd = �n. However the dimension n and

the partition n1; : : : ; nd belonging to the plant is �xed. Our synthesis ob-
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jective is that K ensure the closed-loop is both stable and contractive. We

will make this precise soon, and show that we can easily solve this problem

using the procedure developed in Chapter 7. Before doing this let us �rst

look at the applicability of the NMD synthesis problem to gain scheduling.

Example:

We return to the parameter varying setup described as an example above.

We have a state space realization ( ~A(�); ~B(�); ~C(�); ~D(�) ), which de-

pends on the time varying parameters �1k; : : : ; �rk. Now consider a gain

scheduling scenario where these scalar parameters �jk would not be known

a priori, but are known as each time k is reached. Further suppose that

although they are not known ahead of time, these parameters reside in

normalized intervals, so that �jk 2 [�1; 1] always holds. In this scenario

it would be desirable to design a controller that made use of the measured

parameters and their interval bounds. Such a controller would be of the

form K(�1; : : : ; �r+1), where �1 = Z and �i = �i�1, for i � 2. Thus if our

plant can also be converted to an NMD system G(�1; : : : ; �r+1), �nding a

controller can be posed directly as an NMD synthesis problem. �

Having provided some additional motivation for the setup let us return

to equations governing the closed-loop in Figure 11.2. The equations in

(11.6) and (11.7) can be written more compactly as

xLk = (�LALxL)k + (�LBLw)k

zk = CLxLk +DLwk;

where the matrices (AL; BL; CL; DL) are appropriately de�ned, and

�L =

�
� 0

0 ��

�
; with xL =

�
x

�x

�
:

Notice that (AL; BL; CL; DL) have the same de�nitions as in the H1
synthesis of x7.2. We say an NMD controller K is admissible if for all

�1; : : : ; �d 2 L(`12), with k�ik`2!`2
� 1, the following two conditions are

met:

� the operator I ��LAL is nonsingular;

� the map w 7! z is contractive on `2.

These conditions state that a controller must satisfy a stability or

well-posedness condition, and simultaneously attenuate the input-output

mapping w 7! z. They have clear analogies with the criteria we set for H1
synthesis.

As mentioned already this NMD synthesis problem can solved using es-

sentially the same methodology we employed in solving the H1 synthesis

problem in x7.2 of Chapter 7. We will now provide a sketch of the steps in

the proof. The NMD synthesis result will then be stated in Theorem 11.5.
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To start we require a temporary change of basis via a permutation.

Consider the form of �L:

�L =

�
� 0

0 ��

�
=

2666666664

264�1In1 0
. . .

0 �dInd

375 0

0

264�1I�n1 0
. . .

0 �dI�nd

375

3777777775
Each scalar-operator �i appears twice in the block structure, once in � and

once in ��. Let P be the permutation matrix that satis�es

P ��LP =

264�1InL1 0
. . .

0 �dInLd

375 ; (11.8)

where nLi = ni + �ni. That is this permutation matrix simply rearranges

the blocks so that each �i only appears in a single block. De�ne the positive

symmetric commutant of such operators

XL = fXL 2 Sn+�n : XL > 0 and XL(P
��LP ) = (P ��LP )XL,

for all �i 2 L(`2) with �L de�ned in (11.8)g:

That is, any element of XL has the form

XL =

264XL1 0
. . .

0 XLd

375 ;
where each XLk 2 Sni+�ni and is positive de�nite. We can now state the

following result.

Proposition 11.2. Suppose K(�1; : : : ; �d) is a NMD controller. Then K

is admissible if and only if there exists XL 2 XL such that�
PAP PB

CP D

�� �
XL 0

0 I

��
PAP PB

CP D

�
�
�
XL 0

0 I

�
< 0: (11.9)

Proof . We need to show that both well-posedness and contractiveness are

tantamount to the LMI condition of the proposition. That is I � �LAL
must be nonsingular and CL(I � �LAL)

�1�LBL + D contractive. Ob-

serve that P�1 = P � since P is a permutation matrix. Thus the two

conditions are equivalent to I � (P ��LP )(P
�ALP ) is nonsingular and

CLP (I � (P ��LP )(P
�ALP ))�1(P ��LP )P

�BL + D is contractive. Now

P ��LP is of the form in (11.8), and so by invoking Theorem 11.1 we see

these two latter conditions hold if and only if (11.9) has a solution. �
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Checking the admissibility of any given controller is equivalent to an LMI

feasibility problem. Our ultimate goal is to obtain synthesis conditions, so

we will need to examine the block structure of XL in (11.9). Any XL in XL
is of the block diagonal form diag(XL1; : : : ; XLd) with blocks given by

XLi =

�
Xi X2i

X�
2i X3i

�
;

and the matrices Xi 2 Sni, X2i 2 Rni��ni and X3i 2 S�ni. Now consider the

e�ect of the permutation matrix P in (11.8) on XL. Let XP = PXLP and

we have

XP =

�
X X2

X�
2 X3

�
; (11.10)

where the constituent matrices are

X = diag(X1; : : : ; Xd); X2 = diag(X21; : : : ; X2d); and

X3 = diag(X31; : : : ; X3d). We can pre- and post-multiply the expression

in (11.9) by the matrices diag(P �; I) and diag(P; I) respectively, to arrive

at �
AL BL

CL DL

�� �
XP 0

0 I

��
AL BL

CL DL

�
�
�
XP 0

0 I

�
< 0;

Now from (11.10) the matrix XP has the same partitioned structure as

the XL-matrix that appears in the H1 synthesis of x7.2; however each
of the matrices X1, X2 and X3 is block-diagonal. If we apply the Schur

complement formula twice to the above LMI we get the following equivalent

inequality. 2664
�X�1

P
AL BL 0

A�
L

�XP 0 C�
L

B�
L

0 �I D�
L

0 C�
L

DL �I

3775 < 0: (11.11)

That is a controller is admissible exactly when a solution can be found to

this inequality. This is the critical form for solving the synthesis problem.

The left hand side of this inequality is a�ne in the state space matrices

for the controller. We can use Lemma 7.2 to show that the solution to this

controller dependent LMI, implies the existence of solutions to two matrix

inequalities which do not explicitly or implicitly involve the controller. An-

other application of the Schur complement converts these inequalities into

LMIs, and yields the following lemma.

Lemma 11.3. An admissible controller exists, with partition dimensions

�n1; : : : ; �nd, if and only if there exist symmetric matrices X and Y such

that
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(i) �
NY 0

0 I

�� 24AY A� � Y AY C�1 B1

C1Y A
� C1Y C

�
1 � I D11

B�1 D�11 �I

35 �NY 0

0 I

�
< 0

(ii) �
NX 0

0 I

�� 24A�XA�X A�XB1 C1

B�1XA B�1XB1 � I D�11
C1 D11 �I

35�NX 0

0 I

�
< 0

(iii) The identities

PXLP =

�
X ?

? ?

�
and PX�1

L
P =

�
Y ?

? ?

�
hold, for some XL 2 XL.

where the operators NY , NX satisfy

ImNY = ker
�
B�2 D�12

�
N�
Y
NY = I

ImNX = ker
�
C2 D21

�
N�
X
NX = I:

We have concluded that an admissible controller exists exactly when there

exist solutions X and Y to conditions (i){(iii) in Lemma 11.3. Now (i)

and (ii) are LMIs and are completely speci�ed in terms of the given plant

G. However (iii) is not an LMI condition, but only depends on controller

dimension. Note that X and Y must necessarily be members of the set X
de�ned in (11.5) if they satisfy (iii).

So the next step is to convert (iii) to an LMI-type condition. We have

the following result.

Lemma 11.4. The block-diagonal matrices X, Y 2 X satisfy condition

(iii) in Lemma 11.3 if and only if, for each 1 � k � d, the following

inequalities hold�
Xi I

I Yi

�
� 0 and rank

�
Xi I

I Yi

�
� ni + �ni : (11.12)

Proof . By Lemma 7.8 we see that there exist positive matrices XLk 2
Sni+�ni exist such that

XLk =

�
Xi ?

? ?

�
; and X�1

Lk
=

�
Yi ?

? ?

�
for 1 � k � d, exactly when the inequalities in (11.12) are satis�ed. Clearly

the block-diagonal matrix XL 2 XL, and PXLP satis�es the condition (iii)

in Lemma 11.3. �

The �rst of these conditions is an LMI, however the rank inequality is not.

Note that the rank conditions are trivially met if �ni � ni, and therefore
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can be eliminated if the controller order is chosen to be the same as the

plant. This situation was observed in our earlier H1 synthesis, where we

had only one variable.

We can now state the NMD system synthesis result.

Theorem 11.5. An admissible NMD controller exists if and only if, there

exist matrices X, Y 2 X , which satisfy LMI conditions (i) and (ii) in

Lemma 11.3 , and the LMI conditions given in (11.12), for each k =

1; : : : ; d,.

This gives exact convex conditions for the existence of a solution to the

NMD synthesis problem. Notice that if the rank conditions in (11.12) are

also achieved then a controller synthesis exists with dimensions �n1; : : : ; �nd.

Furthermore, an admissible controller exists if and only if one exists satis-

fying �n1 = n1; : : : ; �nd = nd. Also if d = 1, namely there is only one �i, this

result corresponds exactly to the discrete time H1 synthesis problem; this

is more clearly apparent by consulting Proposition 8.28. When solutions X

and Y are found an explicit controller can be computed by constructing a

scaling XL, and then �nding a controller realization which solves the LMI

given above in (11.11); this is similar to the procedure in x7.3.

11.1.2 Realization theory for multidimensional systems

By using the system construct shown in Figure 11.1 and described in the

associated text above, a number of systems realization concepts can be

generalized to NMD systems by utilizing an LMI approach. Most notable

of these realization topics are minimality and the associated notions of

reducibility and model reduction. Additional realization results that may

be derived for NMD systems include reachability, controllability and ob-

servability conditions, and the construction of Kalman{like decomposition

structures.

We begin by noting that the LMI given in (11.9) has a Lyapunov in-

equality embedded in its top, left corner. As we know from Chapters 2

and 4, in standard state space systems theory Lyapunov equations play a

formidable role in the development of conditions for testing the stability,

minimality, controllability and observability of a given set of realization

matrices (A; B; C; D). Speci�cally, the following are well-known results

for standard state space system realizations in discrete time. They are all

discrete time analogs of results from Chapters 2 and 4:

(i) A matrix A is discrete time stable if and only if, for each Q > 0,

there exists a matrix X > 0 satisfying

A�XA�X +Q = 0:

This equation is one example of a discrete time Lyapunov equation.
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(ii) Given a stable realization, the pair (C;A) is observable if and only if

there exists a positive de�nite solution X to the following Lyapunov

equation:

A�XA�X + C�C = 0:

(iii) Given a stable realization, the pair (A;B) is controllable if and only if

there exists a positive de�nite solution Y to the following Lyapunov

equation:

AY A� � Y +BB� = 0:

Recall that the terms observable and controllable carry much deeper mean-

ings than are obvious from the above simple statements given in terms of

Lyapunov equations. Observability of a realization implies that given an

output sequence y0; : : : ; yn�1, the initial state x0 can be uniquely deter-

mined, and controllability of a realization implies that the initial state can

be transferred to any other �xed state x 2 Rn via a �nite input sequence.

However, in this section, our main purpose is to emphasize the connec-

tions between the solutions to the above Lyapunov equations, namely the

Gramians, and the notion of minimality for a standard state space re-

alization. Given a realization (A; B; C; D) for a system G, we say the

realization is minimal if there exists no other realization for G, for example

(Ar; Br; Cr; Dr), of lower order. That is a realization satisfying dim(Ar) <

dim(A).

As we saw in Chapter 4 a stable realization (A; B; C; D) for a system

G is minimal if and only if it is both controllable and observable, that

is, if and only if the Gramians X and Y are strictly positive de�nite. If a

given realization is not controllable (or observable), the resulting associated

Gramian will be semi-de�nite.

Returning to NMD systems, a parallel result on minimality can been

shown to hold. First we need to state what we mean by equivalent re-

alizations for NMD systems. We say that two realizations (A; B; C; D)

and (Ar; Br; Cr ; Dr) are equivalent if the NMD systems G(�1; : : : ; �d) and

Gr(�1; : : : ; �d) they represent satisfy

kG(�1; : : : ; �d)�Gr(�1; : : : ; �d)k = 0; for all contractive �k 2 L(L12).

More explicitly the systems G and Gr are de�ned by

G(�1; : : : ; �d) = C(I ��A)�1�B +D;

Gr(�1; : : : ; �d) = Cr(I ��rAr)
�1�rBr +Dr;

where

� =

264�1In1 0
. . .

0 �dInd

375 and �r =

264�1Inr1 0
. . .

0 �dInrd

375 :
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Thus we see that two realizations are equivalent if the operators they de�ne

on `2 are the same, for each �k. For multidimensional systems we de�ne

minimal as follows:

De�nition 11.6. A realization (A; B; C; D) for an NMD system is

minimal if dim(A) is lowest among all equivalent realizations.

As it turns out it can be shown that any minimal NMD realization will

further satisfy the condition that ni is lowest, for each i = 1; : : : ; d, among

all equivalent realizations.

We are now in a position to state an NMD system minimality result that

is directly based on LMIs. It says a realization is minimal if and only if

there exist no singular solutions to either of a pair of associated Lyapunov

inequalities, where these solutions are restricted to be in the set X . The
result now given is more general in that it addresses so-called reducibility

and contains minimality as a special case. Note that it is assumed that the

D terms are the same in both the full and reduced systems.

Theorem 11.7. Given a system realization (A; B; C; D) , then there

exists a reduced system realization (Ar; Br; Cr; Dr) such that

sup
k�kk�1

kG�Grk � �

if and only if there exist X � 0 and Y � 0, both in the closure �X , satisfying

(i) AXA� �X +BB� � 0

(ii) A�Y A� Y + C�C � 0

(iii) �min(XY ) = �2; with multiplicity
P

d

i=1(ni � ri)

where � � 0.

Notice that the � = 0 case gives an exact reducibility condition, which leads

directly to a minimality result; that is a realization is minimal if and only if

all solutions to the system Lyapunov inequalities are nonsingular. If a rank

de�cient structured Gramian exists for either of the Lyapunov inequalities,

then an equivalent lower dimension realization exists, and vice versa. Via

the proofs for this case we can also show that for a given NMD system, all

minimal realizations may be found by similarity transformations in X and

truncations.

The � > 0 case leads to a model reduction result. A proof can be derived

directly from the NMD synthesis results above in Theorem 11.5 by viewing

the desired reduced dimension system in the role of the controller. As we

have already noted, such rank constraints are not easily incorporated into

computations. We therefore seek a form of model reduction along the lines

of our earlier work in Chapter 4.
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Balanced Truncation

An alternative approach to model reduction of NMD systems is that of

balanced truncation. For this method, the same LMIs must be solved, that

is structured solutions must be found to the system Lyapunov inequalities.

Following this, the system is balanced exactly as in the standard case of

Chapter 4 where now all balancing transformations are required to be in X .
Truncating the balanced system repetitively for each �i leads to an additive

error bound that is greater than that stated above by a factor of two. More

speci�cally, we proceed as follows.

In order to derive the model reduction error bounds for balanced NMD

systems, we partition the system matrices A; B; C and the balanced struc-

tured Gramian Y = X = � so as to separate the subblocks which will be

truncated. That is, A, B and C are partitioned compatibly with the block

structure � as

A =

264 A11 � � � A1d

...
. . .

...

Ad1 � � � Add

375 ; B =

264 B1

...

Bd

375 ; C =
�
C1 � � � Cd

�
:

We further partition each block of � by �i = diag[�̂1i;�2i], for i = 1; : : : ; d,

where the realization submatrices corresponding to �2i will be truncated.

Denote

�̂1i = diag[�i1Ini1 ; : : : ; �ikiIniki ];

and

�2i = diag[�i(ki+1)Ini(ki+1) ; : : : ; �itiIniti ] ki � ti:

We then truncate both �2i and the corresponding parameter matrices, for

example, we truncate

A11 =

�
Â11 A1112

A1121 A1122

�
; B1 =

�
B̂1

B12

�
and C1 =

h
Ĉ1 C12

i
to Â11, B̂1 and Ĉ1. Partitioning and truncating each Aij , Bj and Ci, i; j =

1; : : : ; d similarly results in the truncated system realization

�
Ar Br

Cr D

�
=

26664
Â11 � � � Â1d B̂1

...
. . .

...
...

Âd1 � � � Âd B̂d

Ĉ1 � � � Ĉd D

37775 ;
with an associated set structure of �r = fdiag[�1Ir1 ; : : : ; �dIrd ] : �i 2
L(l2)g where ri =

P
ki

j=1 nij . Note that �r is constructed with the same

uncertainty variables �i as is �, thus the � 2 � and �r 2 �r are not

independent.
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As in the 1D case, truncating a balanced stable NMD system realization

results in a lower dimension realization which is balanced and stable, which

is easily seen by considering the system Lyapunov inequalities. We now

state the balanced truncation model reduction error bound theorem for

multidimensional systems.

Theorem 11.8. Suppose (Ar; Br; Cr; D) is the reduced model obtained

from the balanced stable system (A; B; C; D). Then

sup
k�kk�1

kG(�1; : : : ; �d)�Gr(�1; : : : ; �d)k � 2

dX
i=1

tiX
j=ki+1

�ij : (11.13)

This result states that the reduced order system is guaranteed to satisfy an

error bound very much similar to the one we saw for standard systems in

Chapter 4. Notice that this result requires the use of Lyapunov inequalities

rather than equations. Also, unlike the previous reduction result, it can be

computed directly using LMIs.

We now leave NMD systems and remove one of the constraints we have

insisted on throughout the course for state space systems, that of time

invariance.

11.2 A Framework for Time Varying Systems:

Synthesis and Analysis

We consider a fundamental class of linear time varying systems in discrete

time. The standard way of describing such a system G is using the state

space system

xk+1 = Akxk +Bkwk

zk = Ckxk +Dkwk
(11.14)

for wk an input sequence, where Ak, Bk, Ck and Dk are bounded matrix

sequences which are given a priori. The initial condition of the system is

x0 = 0.

Such system models arise in a number of applications. One way they

arise is when a nonlinear system is linearized along a trajectory; they can

arise in multirate control or optimal �lter design, where the system is usu-

ally periodic; also they occur when plants and subsystem components are

naturally time varying.

Our main objective is to present a framework for LTV systems that

is consistent with the techniques we have learned so far, and that will

allow us to pursue synthesis and analysis. Thus many of the standard state

space methods we have learned for LTI systems can be applied directly

to LTV systems using the framework we now introduce. We illustrate this

by focusing on controller synthesis for the `2-induced norm (i.e. an H1
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synthesis for LTV systems). In short the technique we now pursue makes a

strong connection with state space and LMI methods so that the transition

from time invariant to time varying analysis appears straightforward.

In x11.2.1 and x11.2.2, to which we now turn, our focus will be intro-

ducing tools for working with LTV systems. Following this we illustrate

the use of this machinery by considering analysis of LTV systems. Having

established these results we state the LTV synthesis conditions in x11.2.4.
The results we derive will be operator inequalities when our initial systems

are general LTV systems. If the the system has the speci�c structure of be-

ing periodic or of �nite time horizon, then the general operator conditions

become structured LMIs. In both cases the conditions we obtain will be

convex.

11.2.1 Block-diagonal operators

We now introduce our �rst concept for LTV systems analysis.

De�nition 11.9. A bounded operator Q mapping `m2 to `n2 is block-

diagonal if there exists a sequence of matrices Qk in Rm�n such that, for

all w; z, if z = Qw then zk = Qkwk. Then Q has the representation26664
Q0 0

Q1

Q2

0
. . .

37775 :
Further, if Pk 2 Rm�n is a uniformly bounded sequence of matrices we say

P = diag(P0; P1; : : : ) is the block-diagonal operator for Pk, and conversely

given P a block-diagonal operator, the blocks are denote by Pk, for k � 0.

Suppose F , G, R and S are block-diagonal operators, and let A be a

partitioned operator, each of whose elements is a block-diagonal operator,

such as

A =

�
F G

R S

�
We now de�ne the following notation:��

F G

R S

��
:= diag(

�
F0 G0

R0 S0

�
;

�
F1 G1

R1 S1

�
; : : : );

which we call the diagonal realization of A. Implicit in the de�nition of
��
A
��

is the underlying block structure of the partitioned operator A. Clearly for

any given operator A of this particular structure,
��
A
��
is simply A with the

rows and columns permuted appropriately so that��
F G

R S

��
k

=

�
Fk Gk

Rk Sk

�
:
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Hence there exist permutation operators, which we shall denote by Pl(A)

and Pr(A), such that Pl(A)APr(A) =
��
A
��
or equivalently

Pl

��
F G

R S

���
F G

R S

�
Pr

��
F G

R S

��
=

��
F G

R S

��
For any operator A whose elements are block-diagonal operators

Pl(A)Pl(A)
� = Pl(A)

�Pl(A) = I;

Pr(A)Pr(A)
� = Pr(A)

�Pr(A) = I

and if A is self-adjoint, then Pl(A) = Pr(A)
�. For a concrete example,

consider
�
F G

�
. Then

Pl
��
F G

��
= I; Pr

��
F G

��
=

�
E

Z�EZ

�
where

E =

26664
1 0 0

0 0 1 0

0 0 0 0 1 0
...

. . .

37775 :
The following is immediate.

Proposition 11.10. For any real number �, and any partitioned operator

A consisting of elements which are block-diagonal, A < �I holds if and only

if
��
A
��
< �I. That is, positivity is preserved under permutation.

Two further useful facts for the above permutations are the following.

Proposition 11.11.

(i) Suppose that A and B are partitioned operators consisting of block-

diagonal elements, and that their structures are the same. Then��
A+B

��
=
��
A
��
+
��
B
��
;

(ii) Suppose that A and C are partitioned operators, each of which consists

of elements which are block-diagonal. Further suppose that the block

structures are compatible, so that the product ÂĈ is block-diagonal

for any operators Â and Ĉ with the same block structures as A and

C. Then ��
AC
��
=
��
A
����
C
��
:

Proof . Part (i) is obvious.

Part (ii) is simple to see, since Pr(A), the right permutation of A, depends

only on the column dimensions of the blocks in A. Since A and C have
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compatible block structure, Pl(C) = Pr(A)
�, and hence��

A
����
C
��
= Pl(A)APr(A)Pl(C)CPr(C)

= Pl(A)ACPr(C)

= Pl(AC)ACPr(AC)

=
��
AC
��

which is the required result. �

The diagonal realization of a partitioned operator, and the notation
��
�
��

will allow us to easily manipulate expressions involving diagonal operators.

We now introduce another new tool.

11.2.2 The system function

To start recall the de�nition of the unilateral shift operator Z on `2 from

(11.4).

Using the previously de�ned notation, clearly Ak, Bk, Ck and Dk in

(11.14) de�ne block-diagonal operators. Using the shift operator Z, we can

rewrite equation (11.14) as

x = ZAx+ ZBw

z = Cx+Dw:

The question of whether this set of equations is well-de�ned, that is whether

or not there exists an x 2 `2 such that they are satis�ed, is one of stability

of the system. If the equations are well-de�ned, then we can write

G = C(I � ZA)�1ZB +D; (11.15)

and z = Gw. These equations are clearly well-de�ned if 1 62 spec(ZA). The

next result shows that this condition is equivalent to a standard notion of

stability of LTV systems, that is exponential stability.

De�nition 11.12. The system G is exponentially stable if, when w = 0,

there exist constants c > 0 and 0 < � < 1 such that, for each k0 � 0 and

any initial condition xk0 2 Rn , the inequality kxkkRn � c�(k�k0)kxk0kRn
holds for all k � k0.

Proposition 11.13. Suppose Ak is a bounded sequence in L(X) where

X is a Hilbert space. Then the di�erence equation xk+1 = Akxk is

exponentially stable if and only if 1 62 spec(ZA).

This is the well-known result that exponential stability is equivalent to `2
stability of the system xk+1 = Akxk + vk ; versions of this result can be

found in any standard reference on Lyapunov theory. Thus the system is

stable if and only if 1 62 spec(ZA); we will work with this latter condition.

Throughout the sequel we will refer to the block-diagonal operators A,

B, C and D, and the operator G they de�ne, without formal reference to

their de�nitions in (11.14) and (11.15).
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We now consider the properties of operators of the form of equa-

tion (11.15). Formally, this equation looks very much like the frequency

domain description of a discrete-time time invariant system. It is well known

that for such systems, one can replace the shift operator Z with a complex

number, and then the induced norm of the system is given by the maximum

norm of this transfer function over the unit ball in the complex plane.

We will show that, for linear time varying systems, very similar state-

ments can be made. Indeed, the induced norm of a linear time varying

system can be analyzed by computing the maximum norm of an operator-

valued function over a complex ball. However in this context, we will use a

bounded sequence �k 2 C of complex numbers as our notion of frequency.

Robust control techniques to date have been primarily developed for LTI

systems; the system function derived here provides an important and di-

rect link between LTI and LTV systems, making the techniques of robust

control available for LTV systems. In particular, this allows the construc-

tion of convex upper-bounds for structured uncertainty problems for LTV

systems.

Given such a sequence, we will make use of two associated block-diagonal

operators. These are

� =

26664
�0I 0

�1I

�2I

0
. . .

37775 
 =

26664
�0I 0

�0�1I

�0�1�2I

0
. . .

37775
(11.16)

on `2. Observe that


Z = �Z
; (11.17)

which is easily veri�ed. Also note that if each element of the sequence �k
is on the unit circle T then 
 is invertible in L(`2). Using the de�nition of

� we de�ne the system function of the operator G by

Ĝ(�) := C(I � �ZA)�1�ZB +D;

when the inverse is de�ned. We can now state the main result of this section.

Theorem 11.14. Suppose 1 62 spec(ZA). Then

kC(I � ZA)�1ZB +Dk = sup
�k2�D

kĜ(�)k;

where � depends on �k as in (11.16).

This theorem says that the induced `2 norm of the system G, which equals

kC(I � ZA)�1ZB +Dk, is given by the maximum of the norm kĜ(�)k,
when the �k are chosen in the unit disk. This result looks similar to the

well-known result for transfer functions of time invariant systems, and it is
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the key element in allowing time invariant techniques to be applied to time

varying systems.

In particular, we will see that we can use this result to derive a time

varying version of the KYP lemma, characterizing those systems which are

contractive. This allows the development of time varying analogs of well-

known results in structured singular value analysis. However �rst we must

prove a preliminary result.

Lemma 11.15. Suppose 1 62 spec(ZA). Then given any sequence �k in the

unit circle T, the operator I � �ZA is invertible and we have

kC(I � ZA)�1ZB +Dk = kĜ(�)k:

Proof . Fix a sequence �k 2 T and de�ne the operator 
 as in (11.16).

Now notice that both 
 and 
�1 are isometries and therefore

kC(I � ZA)�1ZB +Dk = k
fC(I � ZA)�1ZB +Dg
�1k:

To complete the proof consider the operator on the right-hand side above


fC(I � ZA)�1ZB +Dg
�1 = C
(I � ZA)�1Z
�1B +D

= C
(I � ZA)�1
�1�ZB +D

= C(I � �ZA)�1�ZB +D = Ĝ(�);

where we have used the fact that 
 commutes with A, B, C and D, and

the relationship described by equation (11.17). �

This lemma states that it is possible to scale the system matrices A and

B by any complex sequence on the unit circle without a�ecting the norm

of the system. Note that this can equivalently be thought of as scaling Z,

the shift operator. The next lemma describes the e�ect of the operator �

on the spectrum of ZA.

Lemma 11.16. Suppose that �k is a sequence in the closed unit disc �D

and de�ne � as in (11.16):

(i) If � 62 spec(ZA), then � 62 spec(�ZA).

(ii) If the sequence �k is further restricted to be in T, then spec(ZA) =

spec(�ZA).

Proof . First note that without loss of generality we may assume that

� = 1 in (i), and therefore will show that 1 62 spec(ZA) implies that

1 62 spec(�ZA).

We begin proving (i) by invoking Proposition 11.13 to see that, since

1 62 spec(ZA), the di�erence equation xk+1 = Akxk is exponentially stable.

Each �k satis�es j�kj � 1 and so

xk+1 = �k+1Akxk
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is also exponentially stable. Again use Proposition 11.13 to conclude that

1 62 spec(ZQ) where Q is the block-diagonal operator corresponding to

Qk = �k+1Ak. It is routine to verify that ZQ = �ZA.

Part (ii) is immediate by applying (11.17) to see that 
ZA
�1 = �ZA.

�

Note that in particular (i) and (ii) imply, the (apparently) well-known

result, that the spectrum of ZA is an entire disc centered at zero1; to

see this, set � = �I and let � be in �D . We can now prove the main result

of this section.

Proof of Theorem 11.14. For convenience de�ne  := kĜ(I)k which is

equal to kGk by de�nition. Suppose contrary to the theorem that there

exists a sequence �k 2 �D such that kĜ(�)k > . Then there exist elements

x; y 2 `2 satisfying kxk2 = kyk2 = 1 and

jhy; Ĝ(�)wi2j > :

Without loss of generality we may assume that w and y have �nite support,

which we denote by n.

Now it is routine to verify that Ĝ(�) is lower triangular and has the

representation

Ĝ(�) =

26666664

D0 0

�1T10 D1

�2�1T20 �2T21 D2

�3�2�1T30
...

. . .
...

37777775 (11.18)

where Tkl = CkAk�1 � � �Al+1Bl. Therefore, recalling that w and y have

�nite support, the inner product

hy; Ĝ(�)wi2 = p(�1; : : : ; �n);

where p(�; : : : ; �) is some multinomial. Multinomials satisfy a maximum

principle; speci�cally p satis�es

max
�k2�D

jp(�1; : : : ; �n)j = max
�k2T

jp(�1; : : : ; �n)j:

Thus there exist numbers �01; : : : ; �
0
n
on the unit circle T so that

jp(�01; : : : ; �0n)j � jp(�1; : : : ; �n)j > : (11.19)

Let �0 be the operator, of form (11.16), that corresponds to the sequence

f1; �01; : : : ; �0n; 1; : : : g. Observe that by Lemma 11.15 we have kĜ(I)k =

1operators of the form ZA are commonly known as weighted shifts
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kĜ(�0)k. Also note that Ĝ(�0) has the same lower triangular form as Ĝ(�)

in (11.18) and therefore

hy; Ĝ(�0)wi2 = p(�01; : : : ; �
0
n
):

Thus by (11.19) the inequality jhy; Ĝ(�0)wi2j >  holds.

Now certainly kĜ(�0)k � jhy; Ĝ(�0)wi2j and hence kĜ(�0)k > ; also

recall that kĜ(I)k = kĜ(�0)k. But this is a contradiction since by de�nition
 = kĜ(I)k. �

In the sequel we primarily work with the system function when � = �I ,

where � is a complex scalar. Observe by de�ning the notation

Ĝ(�) := C(I � �ZA)�1�ZB +D

this specialized function Ĝ(�) looks and acts very much like the transfer

function of an LTI system, and therefore plays an instrumental role in our

viewpoint in the next section.

11.2.3 Evaluating the `2 induced norm

The previous section showed that the induced norm of a linear time varying

system was given by the maximum of an operator norm over a complex

ball. In this section, our primary goal is to show that this can be recast

into a convex condition on the system matrices. We will see that the results

derived appear very similar to those we have already seen for time invariant

systems, and indeed the methodology parallels it closely.

To start we state the following technical lemma.

Lemma 11.17. The following conditions are equivalent

(i) sup
�2�D kC(I � �ZA)�1�ZB +Dk < 1 and rad(ZA) < 1;

(ii) There exists �X 2 L(`2), which is self-adjoint and �X > 0, such that�
ZA ZB

C D

�� � �X 0

0 I

��
ZA ZB

C D

�
�
�
�X 0

0 I

�
< 0: (11.20)

This is an operator version the matrix KYP lemma. It does not depend on

the structure of A, B, C or D, or the presence of the operator Z.

For comparison, the corresponding standard result for linear time in-

variant discrete time systems is now stated from Proposition 8.28. Given

a system G with transfer function Ĝ(z) := C0(I � zA0)
�1zB0 + D0 in a

minimal realization, the H1 norm of G is less than 1, if and only if, there

exists a matrix X0 > 0 such that�
A0 B0

C0 D0

�� �
X0 0

0 I

��
A0 B0

C0 D0

�
�
�
X0 0

0 I

�
< 0:
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Thus the above LTV result looks very similar to the time invariant result

just stated.

In Lemma 11.17 the variable �X does not necessarily have a block-diagonal

structure, it is simply self-adjoint and positive de�nite. Our next goal is

therefore to improve upon this and obtain a formulation in which the vari-

able is block-diagonal. To this end de�ne the set X to consist of positive

de�nite self-adjoint operators X of the form

X =

26664
X0 0

X1

X2

0
. . .

37775 > 0; (11.21)

where the block structure is the same as that of the operator A. With this

de�nition we can state the main result of this section.

Theorem 11.18. The following conditions are equivalent

(i) kC(I � ZA)�1ZB +Dk < 1 and 1 62 spec(ZA);

(ii) There exists X 2 X such that�
ZA ZB

C D

�� �
X 0

0 I

��
ZA ZB

C D

�
�
�
X 0

0 I

�
< 0: (11.22)

Formally, the result is the same as that for the linear time invariant case,

but the operators ZA and ZB replace the usual A-matrix and B-matrix,

and X is block-diagonal. We shall see in the sequel that this is a general

property of this formalism, and that this gives a simple way to construct

and to understand the relationship between time invariant and time varying

systems.

Proof . We start by invoking Theorem 11.14 and Lemma 11.16 with � :=

�I : condition (i) above is equivalent to condition (i) in Lemma 11.17. There-

fore it su�ces to show that (ii) above is equivalent to (ii) in Lemma 11.17.

Also, a solution X 2 X to (11.22) immediately satis�es (ii) in Lemma 11.17

with �X := X .

It only remains to show that a solution �X to (11.20) implies that there

exists X 2 X satisfying (11.22), which we now demonstrate. Suppose �X 2
L(`2) is self-adjoint, and satis�es both �X > 0 and (11.22). Our goal is to

construct X 2 X from �X and show that it has the desired properties.

De�ne the operator Ek = [0 � � � 0| {z }
k zeros

I 0 � � � ]�, for k � 0, mapping Rn ! `2

which then satis�es

E�
k
A = [0 � � � 0 Ak 0 � � � ]:
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Observe that E�
k
Ek = I . Using Ek de�ne X to be the block-diagonal

operator `2 ! `2 corresponding to the sequence de�ned by

Xk = E�
k
�XEk; for each k � 0.

Thus, X is a block-diagonal operator, whose elements are the blocks on the

diagonal of �X . Clearly X is self-adjoint and satis�es X > 0 because �X has

these properties. This proves X 2 X .
To complete the proof we must now demonstrate that X satis�es (11.22).

Grouping Z in (11.22) with X we apply Proposition 11.10 to see that

(11.22) holds if and only if the permuted inequality���
A B

C D

�� �
Z�XZ 0

0 I

��
A B

C D

�
�
�
X 0

0 I

���
< 0

holds. Now we can apply Proposition 11.11 to show that the above is

tantamount to��
A B

C D

�����
Z�XZ 0

0 I

����
A B

C D

��
�
��
X 0

0 I

��
< 0: (11.23)

We will now show that this inequality is satis�ed.

Observe that, for each k � 0, the following holds 2

E�
k
C = [0 � � � 0 Ck 0 � � � ]:

Now using the fact E�
k
Ek = I it is routine to verify the important property�

A B

C D

� �
Ek 0

0 Ek

�
=

�
Ek 0

0 Ek

� ��
A B

C D

��
k

holds, (11.24)

for each k � 0.

Since �X by assumption satis�es (11.20) there exists a � > 0 such that�
A B

C D

�� �
Z� �XZ 0

0 I

��
A B

C D

�
�
�
�X 0

0 I

�
< ��I:

Pre and post multiply this by diag(Ek ; Ek)
� and diag(Ek; Ek) respectively,

and use (11.24) to get that the matrix inequality��
A B

C D

���
k

�
E�
k

0

0 E�
k

��
Z� �XZ 0

0 I

��
Ek 0

0 Ek

���
A B

C D

��
k

�
�
E�
k

0

0 E�
k

��
�X 0

0 I

��
Ek 0

0 Ek

�
< ��I

2here we do not distinguish between versions of Ek that di�er only in the spatial

dimension of the identity block
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holds, for every k � 0. Finally use the de�nition of X to see that this last

inequality is exactly��
A B

C D

���
k

��
Z�XZ 0

0 I

��
k

��
A B

C D

��
k

�
��
X 0

0 I

��
k

< ��I; (11.25)

for each k � 0. This immediately implies that inequality (11.23) is satis�ed.

�

The following corollary relates the in�nite dimensional linear matrix

inequality to the pointwise properties of the system matrices.

Corollary 11.19. The following conditions are equivalent

(i) kC(I � ZA)�1ZB +Dk < 1 and 1 62 spec(ZA);

(ii) There exists a sequence of matrices Xk > 0, bounded above and below,

such that the inequality�
Ak Bk

Ck Dk

�� �
Xk+1 0

0 I

� �
Ak Bk

Ck Dk

�
�
�
Xk 0

0 I

�
< 0;

holds uniformly.

Proof . The result follows immediately from equation (11.25) in the proof

of Theorem 11.18 using the fact that (Z�XZ)k = Xk+1. �

In this section we have developed an analysis condition for evaluating

the induced norm of an LTV system. In this framework the condition looks

formally equivalent to the KYP lemma for LTI systems.

11.2.4 LTV synthesis

The previous two sections have developed a framework for dealing with

LTV systems and provided analysis results of the form we require to ap-

ply the approach of Chapter 7 to solve the LTV synthesis problem. The

synthesis problem here is, given a discrete linear time-varying system, we

would like to �nd a controller such that the closed-loop is contractive. In

the results of the previous section we saw that, using the framework devel-

oped, it was possible to perform the analysis for the time-varying case by

following directly the methods for the time-invariant case.

Let the LTV system G be de�ned by the following state space equations

xk+1 = Akxk +B1kwk +B2kuk x0 = 0

zk = C1kxk +D11kwk +D12kuk

yk = C2kxk +D21kwk:

(11.26)

We make the physical and technical assumption that the matrices

A;B;C;D are uniformly bounded functions of time. The only restrictions

on this system are that the direct feedthrough term D22 = 0. This is a
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simple condition which is easy to ensure during implementation of such a

system.

We suppose this system is being controlled by an LTV controller K

characterized by

xK
k+1 = AK

k
xK
k
+BK

k
yk

uk = CK

k
xK
k
+DK

k
yk:

(11.27)

Here we use n to dentote the number of states of G and �n is the number

of states of K. The connection of G and K is shown in Figure 11.3.

K

G
z w

Figure 11.3. Closed-loop system

We write the realization of the closed loop system as

xL
k+1 = AL

k
xL
k
+BL

k
wk

zk = CL

k
xL
k
+DL

k
wk;

(11.28)

where xk contains the combined states of G and K,and AL

k
, BL

k
, CL

k
and

DL

k
are appropriately de�ned.

We are only interested in controllersK that both stabilize G and provide

acceptable performance as measured by the induced norm of the map w 7!
z. The following de�nition expresses our synthesis goal. A controller K is

an admissible synthesis for G in Figure 11.3, if

� the spectral condition 1 62 spec(ZAL) holds;

� the closed-loop performance kw 7! zk`2!`2
< 1 is achieved.

Hence, recalling Proposition 11.13 we are requiring the closed-loop system

de�ned by equations (11.28) be exponentially stable, in addition to be-

ing strictly contractive. We have the following theorem, which is written

entirely in terms of block-diagonal operators and the shift.

Theorem 11.20. There exists an admissible synthesis K for G, with state

dimension m � n, if and only if there exist block-diagonal operators Y > 0

and X > 0 satisfying
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(i)

�
NY 0

0 I

�� 24ZAY A�Z� � Y ZAY C�1 B1

C1Y A
�Z� C1Y C

�
1 � I D11

B�1 D�11 �I

35�NY 0

0 I

�
< 0

(ii)

�
NX 0

0 I

�� 24A�Z�XZA�X A�Z�XZB1 C1

B�1Z
�XZA B�1Z

�XZB1 � I D�11
C1 D11 �I

35�NX 0

0 I

�
<

0

(iii)

�
Y I

I X

�
� 0

where the operators NY , NX satisfy

ImNY = ker
�
B�2Z

� D�12
�

N�
Y
NY = I

ImNX = ker
�
C2 D21

�
N�
X
NX = I:

This makes the correspondence with the time-invariant case, and the for-

mulae of Chapter 7 clear; formally one can simply replace the A-matrix by

ZA and the B-matrix by ZB in the latter to arrive at the former.

The above synthesis theorem can be derived routinely by using the ma-

chinery developed in x11.2.1 and x11.2.2, and the KYP lemma of x11.2.3.
This is done simply by following the methodology used in the time-invariant

case in Chapter 7. Further, this solution has the important property of be-

ing convex. This o�ers not only powerful computational properties, but

also gives insight into the structure of the solution.

11.2.5 Periodic systems and �nite dimensional conditions

The synthesis condition stated in Theorem 11.20 is in general in�nite di-

mensional, as is the analysis condition of Theorem 11.18. However there

are two important cases in which these results reduce to �nite dimensional

convex problems. The �rst is when one is only interested in behavior on the

�nite horizon. In this case the matrix sequences Ak,Bk,Ck and Dk would be

chosen to be zero for k � N the length of the horizon. Thus the associated

analysis and synthesis inequalities immediately reduce to �nite dimensional

conditions. The second major case that reduces occurs when the system G

is periodic, and explaining this connection is the purpose of this section.

An operator P on `2 is said to be q-periodic if

ZqP = PZq;

namely it commutes with q shifts. Throughout the sequel we �x q � 1 to

be some integer.

Before stating the next result we require some additional notation. Sup-

pose Q is a q-periodic block-diagonal operator, then we de�ne ~Q to be the
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�rst period truncation of Q, namely

~Q :=

264Q0 0
. . .

0 Qq�1

375 ;
which is a matrix. Also de�ne the cyclic shift matrix ~Z, for q � 2, by

~Z =

266664
0 � � � 0 I

I
. . . 0
. . .

...

I 0

377775 ; such that ~Z� ~Q ~Z =

26664
Q1 0

. . .

Qq�1
0 Q0

37775 :

For q = 1 set ~Z = I . Also de�ne the truncation of the set X , de�ned in

(11.21), by

~X := f ~X : X 2 Xg:

Using these new de�nitions we have the following theorem which is a

periodic version of Theorem 11.18.

Theorem 11.21. Suppose A, B, C and D are q-periodic operators. The

following conditions are equivalent

(i) kC(I � ZA)�1ZB +Dk < 1 and 1 62 spec(ZA);

(ii) There exists a matrix ~X 2 ~X such that�
~Z ~A ~Z ~B
~C ~D

�� � ~X 0

0 I

��
~Z ~A ~Z ~B
~C ~D

�
�
�
~X 0

0 I

�
< 0: (11.29)

Thus this result gives an LMI condition to determine the `2 induced norm

of a periodic system of the form in (11.14). Notice that the statement of

this theorem simply involves replacing all the objects in Theorem 11.18

with their \wave" equivalent; for instance A now appears as ~A. We have

the following synthesis theorem which mirrors this pattern exactly.

Theorem 11.22. Suppose G has a q-periodic realization. Then an admis-

sible controller of order �n � n exists if and only if there exist solutions to

the inequalities of Theorem 11.20, where A, B, C, D, X, Y and Z, are

replaced by the block-matrices de�ned by ~A, ~B, ~C, ~D, ~X, ~Y and ~Z

Given this correspondence one wonders whether a �nite dimensional

system function can be de�ned. The answer is yes. De�ne

~G(~�) := ~C(I � ~� ~Z ~A)�1 ~� ~Z ~B + ~D:
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Here the matrix ~� is de�ned by

~� =

264�0 0
. . .

�q�1

375 ;
with the �k being complex scalars. Analogs of our recent results on the

system function exist for this periodic systems function.

This brings us to the end of our quick look at LTV systems. The frame-

work presented here reduces general time varying problems to solutions in

terms of structured operator inequalities; these inequalities follow from the

standard LTI problems we have studied in earlier chapters. We have explic-

itly illustrated this by applying the new tools to deriving a KYP lemma

for LTV systems, and then provided the corresponding synthesis results

without proof. These general results become bona �de LMI problems when

periodic or �nite time horizon systems are being considered. In summary

the main feature of the framework is that it makes direct ties to the stan-

dard LMI techniques for time invariant systems, and thus many results and

derivations become formally equivalent.

Notes and references

The work in x11.1 on NMD systems is based on related ideas and concepts

from [77, 89, 7]. The �rst of these papers studies LPV control for stabiliza-

tion only, whereas the second includes performance. The paper [7] focuses

on model reduction of NMD systems.

The presentation and technical machinery for LTV systems developed in

x11.2 are based on [31]. For the Lyapunov theory required on exponential

stability in this section, see for example [137]. In Theorem 11.14 a max-

imum principle for multinomials is required, and can be found in [104];

this monograph also provides many useful details on complex functions of

several variables. A proof of the Lemma 11.17 can be found in [145].

Problems involving time varying systems have been extensively studied

and there is a large literature. For references in a Riccati equation context

see [50] and the references therein. In particular the papers [4, 60] use

techniques related to the one presented here.
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AppendixA

Some Basic Measure Theory

In this appendix we will make precise some of the terminology used in

Chapter 3. Speci�cally we target the terms \for almost every" and \essen-

tial supremum". These terms are introduced because many mathematical

properties of functions (of a real variable) hold in nearly all instances, but

fail on very small subsets of the real line; for this reason it is worthwhile

to specify rigorously what we mean by small sets. What we present here

is a very brief treatment aimed only at providing basic understanding of

these terms and the required concepts from measure theory. The subject

of measure theory is vast, and we refer the reader to [140] for more details

at an introductory level, and to [53] for a more advanced treatment of the

subject.

A.1 Sets of zero measure

We will con�ne ourselves to considering subsets of the real line R, with the

speci�c goal of classifying the smallest of these. To do this our �rst task is

to investigate some of the basic notions of size or measure
1 of sets. Suppose

we have two subsets S1 and S2 of R, and S2 � S1. Then clearly S2 is no

larger than S1 and our usual intuition about measuring size must preserve

this. The notion we aim to make precise is, when will we say that these

1We will restrict ourselves to Lebesgue measure.



A.1. Sets of zero measure 353

sets are the same size. Clearly this question distills down to:

When is the di�erence S1nS2 small?
Said yet another way, when do we say that the size of the di�erence between

the sets is insigni�cant? Thus in order to answer this question we need to

precisely de�ne what we mean by insigni�cant in size. We will introduce

the idea of a set having zero size, or in mathematical language having zero

measure.

The �rst thing we require is a de�nition for the size of an open interval

(a; b) in R. We de�ne the size of this set to be b� a, which is exactly our

usual notion of length. Generalizing this, suppose we have a collection of n

disjoint intervals

(a1; b1); (a2; b2); : : : ; (an; bn);

and de�ne the associated set

G = (a1; b1) [ (a2; b2) [ : : : [ (an; bn)

to be their union. Since the intervals are disjoint, our usual intuition about

size would dictate that the size of G should be additively based on these

interval lengths. We therefore accordingly de�ne the size of this set to be

nX
k=1

(bk � ak) = size of G:

With these de�nitions in place, consider a subset S which is contained

in such a union:

S � [n
k=1(ak; bk):

Then if S has some size associated with it we would want this size to satisfy

size of S �
nX

k=1

(bk � ak):

Notice that this bound will remain true regardless of whether or not these

intervals are disjoint, we therefore proceed assuming that they are not

necessarily disjoint. Let us generalize this idea to a countable number of

intervals. Suppose that

S � [1
k=1(ak; bk):

Then if we have a size associated with S, we would naturally conclude that

size of S �
1X
k=1

(bk � ak) must hold:

If the series on the right converges we have an upper bound on the possible

size, or measure, of the set S. Of course if the series diverges then the above
inequality gives us no information about the set S.



354 AppendixA. Some Basic Measure Theory

Having done a little exploration above about measuring sets, we are now

ready to de�ne a set of zero measure.

De�nition A.1. A subset S � R has zero measure if, for every � > 0,

there exists a countable family of intervals (ak; bk) such that the following

conditions hold:

(a) The set S is a subset of the union [1
k=1(ak; bk);

(b) The sum
P1

k=1(bk � ak) < �.

Given our discussion above this de�nition can be interpreted as follows:

a set S has zero measure if the upper bound on its size can be made as

small as desired. To see how this de�nition applies we consider two simple

examples.

Examples:

First we consider the simplest nonempty sets in R, those containing one

element; let S = ftg be such a set. For � > 0 this set is contained in the

interval (t� �

2
; t+ �

2
), whose length is �. Thus directly from the de�nition

this set has zero measure. More intuitively this construction says that

size S � �:

Therefore S has zero size, since the above inequality holds for any � > 0.

Using the same argument it is not di�cult to show that any set comprised

of a �nite number of points ft1; : : : ; tng has zero measure.
Let us now turn to the set of natural numbers N = f1; 2; 3; : : : g. This

set contains a countably in�nite number of points, yet we will now see that

it too has zero measure. Set � to be any number satisfying 0 < � < 1, and

de�ne the intervals

(ak; bk) =

�
k � (1� �)�k

2
; k +

(1� �)�k

2

�
;

for each k 2 N. Since k 2 (ak; bk), for each k > 0, we see that

N � [1
k=1(ak; bk):

The length of each interval (ak; bk) is (1� �)�k, and so

1X
k=1

(bk � ak) =

1X
k=1

(1� �)�k = �;

where we have used the geometric series formula. From our de�nition above

we conclude that N has zero measure; its size is clearly smaller than any

�. We leave as an exercise the extension of this example to show that the

integers Z are also a subset of R that has zero measure. Similarly it is pos-

sible to show that any countable subset of the real line has measure zero.

In particular the set of rational numbers Q is of zero measure; this fact



A.2. Terminology 355

is perhaps surprising at �rst glance since the rationals are so densely dis-

tributed on the real line. The examples we have given here of zero measure

sets all have a �nite or countable number of elements; not all sets of zero

measure are countable, but constructing them is more involved. �

A.2 Terminology

Having introduced the de�nition of a set of zero measure, we can explain

the meaning of the term \for almost every". Suppose that P (t) is a logical

condition which depends on the real variable t. Then recall that a statement

\For every t 2 R the condition P (t) holds"

means that, for any chosen value t0 2 R, the condition P (t0) is true. Then

we de�ne the following terminology.

De�nition A.2. Given a logical condition P (t), which depends on the real

variable t, the expression \For almost every t 2 R the condition P (t) holds",

means that the set

S = ft0 2 R : P (t0) is falseg has zero measure.

This de�nition states that \for almost every" means that the condition P (t)

can fail for some values of t, provided that it only fails on a very small set

of points. Put more precisely, the set S of points where the condition P (t)

is false has zero measure. Notice that this means that \for every" implies

for \for almost every" but the converse is not true; namely the former is

the stronger condition. To further see the implications of this terminology

we consider some examples.

Examples:

Consider the function f(t) = sin2 �t. This function does not satisfy f(t) >

0, for all t 2 R, since the positivity condition fails when t is an integer.

Since we know Z is a set of measure zero it follows that

f(t) > 0, for almost all t 2 R

For the purpose of another example consider the function

d(t) =

�
1; for t 2 Q ;

0; for t 62 Q :

Then we see that d(t) = 0, for almost all t. Further given any function g(t),

it follows from the properties of d that that (g d)(t) = 0, for almost all t.

�

So far we have assumed that P (t) is de�ned on R, however it not un-

common for logical conditions to depend on subsets of the real line, and
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we therefore extend our above de�nition. If D is a subset of R then \For

almost every t 2 D the condition P (t) holds" is de�ned to mean that the

set S = ft0 2 D : P (t0) is falseg is of zero measure.
We can now turn to the de�nition of the essential supremum of a function.

De�nition A.3. Suppose that D is a subset of R, and the function f :

R ! R. The essential supremum of the function over D is de�ned by

ess sup
t2D

f(t) = inff� 2 R : the function f(t) < �, for almost every t 2 D.g

In other words a function is never greater than its essential supremum,

except on a set of measure zero, and the essential supremum is the smallest

number that has this property. Thus we immediately see that the essential

supremum of a function can never be greater than the supremum. The

basic property which makes the essential supremum useful is that it ignores

values of the function that are only approached on a set of zero measure.

Again we look at some concrete examples to make this de�nition clear.

Examples:

De�ne the function h : [0; 1)! R by

h(t) =

�
e�t; for t > 0;

2; for t = 0:

Then according the de�nitions of supremum and essential supremum we

have

sup
t2[0;1)

h(t) = 2 and ess sup
t2[0;1)

h(t) = 1:

The distinguishing property here is that the supremum of 2 is only ap-

proached (in fact achieved) at one point, namely t = 0, whereas the function

is otherwise less than one, so the essential supremum can be no greater than

one. However for any value of � < 1, the set of points for which h(t) � � is

never of zero measure for it always contains an interval. Thus the essential

supremum is indeed one.

Recall the function d(t) just de�ned above. It satis�es

sup
t2R

d(t) = 1 and ess sup
t2R

d(t) = 0:

To see this simply realize that d(t) is only near the value one on a set of

zero measure, namely the rational numbers; otherwise it is always equal to

zero. In fact, given any function g(t) we have that ess sup(g d)(t) = 0.

Finally we leave as an exercise the veri�cation of the fact that if f(t) is a

continuous function, then its supremum is equal to its essential supremum.

�
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A.3 Comments on norms and Lp spaces

To end this appendix we discuss how sets of measure zero play a role in

de�ning the elements in an Lp(�1; 1) space. We begin by focusing on

L1 and an example.

Example:

Let f(t) be the function that is zero at every time, and then clearly kfk1 =

0. Also de�ne the function g by

g(t) =

�
1; t 2 Z

0; t 62 Z:

From the above discussion of the essential supremum we know that kgk1 =

0. Thus we have that f and g are functions in L1 which both have norm

zero. In fact it is clear that we can de�ne many di�erent functions with

zero in�nity norm.

�

This example seems to indicate that k � k1 is not a norm, since it violates

the requirement that only one element can have zero norm. What is needed

to reconcile this dichotomy is a reinterpretation of what we mean by an

element of L1:

Functions that di�er only on a set of measure zero are

considered to represent the same element.

Thus in our example above f and g both represent the zero element in L1.
Furthermore if h and w are L1 functions, and satisfy kh�wk1 = 0, then

they represent the same element. Thus strictly speaking the elements of

L1 are not functions but instead sets of functions, where each set contains

functions that are equivalent.

We now generalize to Lp spaces, for 1 � p <1. Recall that the norm is

de�ned by

khkp =
�Z 1

�1
jh(t)jp

p
dt

� 1
p

:

It is a fact that if h is zero everywhere except on a set of zero measure,

then

khkp = 0:

That is function values on a measure zero set do not contribute to the

integral.2 Thus we see that the two example functions f and g given above

have zero norm in every Lp space, and as a result we cannot rigorously

2This is based on Lebesgue integration theory.
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regard them as distinct. So just as in L1 we regard any functions that

di�er only on a set of measure zero as representing the same element in Lp.

In doing this all the mappings k � kp indeed de�ne norms.

To conclude we emphasize that for our purposes in this course the dis-

tinction between functions and elements of an Lp space is not crucial, and

elements of Lp spaces can be viewed as functions without compromising

understanding.
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AppendixB

Proofs of Strict Separation

This appendix presents two technical proofs which were omitted in Chap-

ters 8 and 9, part of the argument to establish necessity of scaled small-gain

conditions for robustness. Speci�cally we will prove two propositions which

concerned the strict separation of the sets r and � in Rd . These were

de�ned as

� = f(r1; : : : ; rd) 2 Rd : rk � 0; for each k = 1; : : : ; dg;
r = f(�1(q); : : : ; �d(q)) 2 Rd : q 2 L2 satisfying kqk2 = 1g:

We recall that �k(q) = kEkMqk2 � kEkqk2, M is the nominal LTI

system under consideration, and the projection matrices Ek break up

signals in components conformably with the uncertainty structure � =

diag(�1; : : : ;�d):

In what follows, L2[a; b] denotes the subspace of functions in L2[0; 1)

with support in the interval [a; b], and P[a;b] : L2[0; 1) ! L2[a; b] is the

natural projection. We now state the �rst pending result.

Proposition B.1 (Proposition 8.9, Chapter 8). Suppose that (M; �a)

is robustly well-connected. Then the sets � and r are strictly separated, i.e.

D(�;r) := inf
r2�;y2r

jr � yj > 0:

We will give a proof by contrapositive, based on the following key lemma.

Lemma B.2. Suppose D(r;�) = 0. Given any � > 0 and any t0 � 0 the

following conditions can be satis�ed:
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1. There exists a closed interval [t0; t1], and two functions p; q 2
L2[t0; t1], with kqk = 1, such that

kEkpk � kEkqk; for each k = 1; : : : ; d: (B.1)

�2 > k(I � P[t0;t1])Mqk (B.2)

�
p
d = kp� P[t0;t1]Mqk (B.3)

2. With the above choice of [t0; t1] and q, there exists an operator � =

diag(�1; : : : ;�d) in L(L2[t0; t1]) \�a, such that k�k � 1 and

k
�
I ��P[t0;t1]M

�
qk � �

p
d: (B.4)

Proof . Fix � > 0 and t0 � 0. By hypothesis, there exists q 2 L2, kqk = 1,

satisfying �k(q) > ��2 for each k = 1; : : : ; d. This amounts to

�2 + kEkMqk2 > kEkqk2; for each k = 1; : : : ; d:

Now clearly if the support of q is truncated to a su�ciently long interval,

and q is rescaled to have unit norm, the above inequality will still be satis-

�ed by continuity of the norm. Also since Mq 2 L2, by possibly enlarging

this truncation interval we can obtain [t0; t1] satisfying (B.2), and also

�2 + kEkP[t0;t1]Mqk2 > kEkqk2; for each k = 1; : : : ; d:

Next choose � 2 L2[t0; t1] such that Ek� has norm � and is orthogonal to

EkP[t0;t1]Mq, for each k = 1; : : : ; d. Then de�ne

p = P[t0;t1]Mq + �:

Now k�k = �
p
d so (B.3) follows, and also

kEkpk2 = �2 + kEkP[t0;t1]Mqk2 > kEkqk2; for every k = 1; : : : ; d;

which proves (B.1) and completes Part 1.

For Part 2, we start from (B.1) and invoke Lemma 8.4, Chapter 8 (notice

that it holds in any L2 space), to construct a contractive, block diagonal

� satisfying �p = q. Then�
I ��P[t0;t1]M

�
q = �

�
p� P[t0;t1]Mq

�
so (B.4) follows from (B.3). �

Proof . (Proposition B.1) The argument is by contrapositive: we assume

that D(r;�) = 0, the objective is to construct a perturbation � 2 �a

such that I ��M is singular.

Fix any positive sequence �n ! 0 as n tends to 1. For each n, we

construct q(n) and �(n) as in Lemma B.2. Since their supports can be

shifted arbitrarily, we choose them to be of the form [tn; tn+1], with t0 =

0, so that these intervals form a complete partition of [0; 1). Now we

can combine the �(n) 2 L(L2[tn; tn+1]) \�a to construct a single � 2
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L(L2[0; 1)), de�ned by

� =

1X
n=1

�(n)P[tn;tn+1]: (B.5)

Descriptively, this operator breaks up a signal u into its components in the

time partition [tn; tn+1], applies �
(n) to each \piece" P[tn;tn+1]u, and puts

the resulting pieces back together. It is easy to see that k�k � 1, since all

the �(n) are contractive. Furthermore � inherits the block-diagonal spatial

structure so � 2�a.

Now apply � to the signal Mq(n) for a �xed n. We can write

�Mq(n) = �
�
P[tn;tn+1] + (I � P[tn;tn+1])

	
Mq(n)

= �(n)P[tn;tn+1]Mq(n) +�(I � P[tn;tn+1])Mq(n);

Applying the triangle inequality this leads to

k (I ��M) q(n)k � k
�
I ��(n)P[tn;tn+1]M

�
q(n)k+ k(I � P[tn;tn+1])Mq(n)k

� �n
p
d+ �2

n
;

where we have used (B.4) and (B.2) respectively. Now we let n ! 1
to see that the right hand side tends to zero, and thus so does the left

hand side. Therefore I � �M cannot have a bounded inverse since for

each n we know by de�nition that kq(n)k = 1. This contradicts robust

well-connectedness. �

We turn now to our second result which states that if we restrict ourselves

to the causal operators in �a, our �rst result still holds.

Proposition B.3 (Proposition 9.8, Chapter 9). Suppose (M; �a;c) is

robustly stable. Then D(�;r) > 0.

As compared to Proposition B.1, the hypothesis has now changed to state

that I ��M has a causal, bounded inverse, for every causal � 2�a.

This means that we would already have a proof by contradiction if the

� we constructed in the previous proposition were causal. Looking more

closely, we see that the issue is the causality of each term �(n)P[tn;tn+1]; un-

fortunately, the basic construction of �(n) mapping p(n) to q(n) in Lemma

B.2 cannot guarantee causality inside the interval [tn; tn+1]. Obtaining the

desired causality requires a more re�ned argument.

Lemma B.4. Suppose D(r;�) = 0. Given � = 1p
n
> 0 and t0 � 0 there

exist:

(i) an interval [t0; ~t1];

(ii) a signal ~q 2 L2[t0; ~t1], k~qk = 1;

(iii) a contractive operator ~� in L(L2[t0; ~t1]) \�a, with ~�P[t0;~t1] causal,
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satisfying

k(I � P[t0;~t1])M ~qk � 1p
n

(B.6)

k
�
I � ~�P[t0;~t1]M

�
~qk � �p

n
(B.7)

for some constant �.

Before embarking on the proof of this lemma, we observe that it su�ces

to prove Proposition B.3. In fact, we can repeat the construction of (B.5)

and obtain � which is now causal and makes I ��M singular. The latter

fact is established by using (B.6) and (B.7) instead of (B.2) and (B.4) , for

�n = 1=
p
n.

Therefore we concentrate our e�orts in proving Lemma B.4.

Proof . We �rst invoke Lemma B.2 to construct an interval [t0; t1], func-

tions p; q and an operator � with the stated properties. For simplicity, we

will take t0 = 0 from now on; it is clear that everything can be shifted

appropriately. Also we denote h = t1.

h0

q

p

~q

~p

nh nh+ h

Figure B.1. Signals q and p (dashed); ~q and ~p (solid).

An illustration of the functions q and p is given by the broken line in

Figure B.1. Notice that in this picture p appears to have greater norm than

q, but this \energy" appears later in time; this would preclude a causal,

contractive � from mapping p to q.

To get around this di�culty, we introduce a periodic repetition (n = 1=�2

times) of the signals p and q, de�ning

~q =
1p
n

nX
i=1

Sihq; ~p =
1p
n

n�1X
i=0

Sihp;

where S� denotes time shift as usual. The signals are sketched in Figure

B.1. Notice that there is an extra delay for ~q; this is done deliberately so
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that ~p anticipates its energy to ~q. Also, the normalizing factor is added to

ensure k~qk = 1. Both signals are supported in [0; ~t1] where ~t1 = (n+ 1)h.

Now we introduce the operator

~� =

n�1X
i=0

S(i+1)h�S�ihP[ih;(i+1)h]

Notice that each term of the above sum truncates a signal to [ih; (i+1)h],

shifts back to the interval [0; h], applies � we had obtained from Lemma

B.2, and shifts it again forward to [(i + 1)h; (i + 2)h] (i.e. by one extra

interval of h). A little thought will convince the reader that

� ~� maps L2[0; (n+ 1)h] to itself;

� Since � is contractive, so is ~�;

� Since �p = q, then ~�~p = ~q.

We claim that ~� is causal. By de�nition, this means that PT ~�PT = PT ~�

for all T , where PT denotes truncation to [0; T ]; the only non-trivial case

here is when T 2 [0; (n+ 1)h]. In particular assume that

i0h < T � (i0 + 1)h;

for some integer i0 between 0 and n. First observe that

PT ~� = PT

i0�1X
i=0

S(i+1)h�S�ihP[ih;(i+1)h]; (B.8)

since the remaining terms in the sum ~� have their image supported in

[(i0 + 1)h;1). For the terms in (B.8) we have (i+ 1)h � i0h < T so

P[ih;(i+1)h]PT = P[ih;(i+1)h]:

Therefore multiplying (B.8) on the right by PT is inconsequential, i.e.

PT ~�PT = PT ~�.

It only remains to show that the given ~� and ~q satisfy (B.6) and (B.7).

We �rst write

k(I � P[0;~t1])M ~qk � 1p
n

nX
i=1

k(I � P[0;(n+1)h])SihMqk

� 1p
n

nX
i=1

k(I � P[ih;(i+1)h])SihMqk

=
1p
n

nX
i=1

kSih(I � P[0;h])Mqk

=
p
n k(I � P[0;h])Mqk � 1p

n
: (B.9)
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The �rst step relies on the time invariance ofM , and the last bound follows

from (B.2), since �2 = 1=n. This proves (B.6).

To prove (B.7) it su�ces to show that for some constant �,

k~p� P[0;~t1]M ~qk � �p
n
; (B.10)

in this case contractiveness of ~� gives (B.7) because

~�
�
~p� P[0;~t1]M ~q

�
=
�
I � ~�P[0;~t1]M

�
~q:

We thus focus on (B.10); this bound is broken in two parts, the �rst isP[0;~t1]M ~q � 1p
n

nX
i=1

SihP[0;h]Mq

 � 1p
n
; (B.11)

and its derivation is left as an exercise since it is almost identical to (B.9).

The second quantity to bound is~p� 1p
n

nX
i=1

SihP[0;h]Mq

 =
1p
n

p� SnhP[0;h]Mq +

n�1X
i=1

Sih(p� P[0;h]Mq)

 : (B.12)

Notice that we have isolated two terms inside the norm sign on the right

hand side, since the sums we are comparing have slightly di�erent index

ranges; these two terms have a bounded norm, however, since kqk = 1, M

is a bounded operator, and p is close to Mq because of (B.2 ). As for the

last sum, the terms have disjoint support so
n�1X
i=1

Sih(p� P[0;h]Mq)


2

=

n�1X
i=1

kp� P[0;h]Mqk2 � (n� 1)�2d � d;

where we invoked (B.3). This means that right hand side of (B.12) is

bounded by some constant times 1=
p
n. Now combining this with (B.11)

we have (B.10), concluding the proof. �

Notes and references

The preceding proofs follow the ideas in [122], that in particular proposed

the periodic repetition method to construct a causal, destabilizing �.
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AppendixC

�-Simple Structures

This appendix is devoted to the proof of Theorem 8.27 which characterizes

the uncertainty structures for which the structured singular value is equal

to its upper bound, i.e.

�(M; �s;f ) = inf
�2�s;f

��(�M��1):

We will focus on showing that the condition 2s+ f � 3 is su�cient for the

above; the references can be consulted for counterexamples in the remaining

cases.

Clearly due to the scalability of � and its upper bound it su�ces to show

that

�(M; �s;f ) < 1 implies inf
�2�s;f

��(�M��1) < 1:

This step is fairly technical and found in very few places in the literature;

our treatment here is based on the common language of quadratic forms,

developed in Chapter 8.

We recall the de�nition of the sets

rs;f := f(�1(q); : : : ;�s(q); �s+1(q); : : : ; �s+f (q)) : q 2 Cm ; jqj = 1g
�s;f := f(R1; : : : ; Rs; rs+1; : : : ; rs+f ); Rk = R�

k
� 0; rk � 0g;

where the quadratic functions

�k(q) =EkMqq�M�E�
k
�Ekqq

�E�
k
;

�k(q) =q
�M�E�

k
EkMq � q�E�

k
Ekq ;
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were used to characterize the uncertainty structure. In particular, we

showed in Propositions 8.25 and 8.26 that:

� �(M; �s;f ) < 1 if and only if rs;f and �s;f are disjoint.

� inf�2�s;f ��(�M��1) < 1 if and only if co(rs;f ) and �s;f are disjoint.

Thus our problem reduces to establishing that when 2s+ f � 3, if rs;f

and �s;f are disjoint, then co(rs;f ) and �s;f are also disjoint. Unfortu-

nately this cannot be established by invoking convexity of rs;f , which in

general does not hold; thus a specialized argument is required in each case.

We will concentrate our e�orts in the \extreme" cases (s; f) = (1; 1)

and (s; f) = (0; 3). These su�ce to cover all cases since if the bound is

exact for a certain structure, it must also be exact with fewer uncertainty

blocks of each type. This can be shown by starting with a smaller problem,

e.g. (s; f) = (0; 2), then de�ning an augmented problem with an extra

uncertainty block which is \inactive", i.e. the added blocks of theM matrix

are zero. Then the result for the larger structure can be invoked; we leave

details to the reader.

The two key cases are covered respectively in Sections C.1 and C.2.

C.1 The case of �1; 1

Let us start our proof by writing the partition

M =

�
M11 M12

M21 M11

�
in correspondence with the two blocks in �1;1. A �rst observation is that

if �(M11) � 1, then there exists a complex scalar � satisfying j�j � 1, such

that �
I 0

0 I

�
�
�
M11 M12

M21 M11

��
�I 0

0 0

�
is singular.

Now the matrix on the right is a member of �1;1 and has a maximum

singular value of at most one, and therefore we see that �(M; �1;1) � 1.

This means that if �(M; �1;1) < 1, then necessarily �(M11) < 1 is satis�ed.

We will therefore assume as we proceed that the latter condition holds.

We now recast our problem in terms of the sets r1;1 and �1;1. It will

also be convenient to introduce the subset of �1;1 given by

�1;1 := f(0; r) : 0 2 Sm1; r 2 R; r � 0g:
We can state the main result:

Theorem C.1. Suppose that �(M11) < 1. The following are equivalent:

(a) co(r1;1) and �1;1 are disjoint;
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(b) r1;1 and �1;1 are disjoint;

(c) r1;1 and �1;1 are disjoint;

(d) co(r1;1) and �1;1 are disjoint.

Clearly what we are after is the equivalence of (a) and (b), which by Propo-

sitions 8.25 and 8.26 implies the equality of the structured singular value

and its upper bound. The other two steps will be convenient for the proof.

An important comment is that the result is true even though the set r1;1

is not in general convex.

Let us now examine these conditions. Condition (a) obviously implies

all the others; also (c) is immediately implied by all the other conditions.

Therefore to prove the theorem it is therefore su�cient to show that (c)

implies (a). We do this in two steps. First we show that (d) implies (a)

in Lemma C.2 below; and then �nally the most challenging part, that (c)

implies (d), is proved in Lemma C.6 of the sequel. Having made these

observations we are ready to begin proving the theorem, which starts with

the following lemma.

Lemma C.2. Suppose that �(M11) < 1. If co(r1;1) and �1;1 are disjoint,

then co(r1;1) and �1;1 are disjoint.

Proof . Start by noting that co(r1;1) and �1;1 are disjoint convex sets in V,

with co(r1;1) compact and �1;1 closed. Hence they are strictly separated

by a hyperplane; namely there exists a symmetric matrix � and a real

number  such that

Tr(��1(q)) + �2(q) < � � r for every q; jqj = 1; and every r � 0:

It follows that  � 0, since � � r for all positive numbers r; and there-

fore that we can choose � = 0 in the above separation. Now analogously

to the proof of Proposition 8.26 the �rst inequality can be rewritten as

M�
�
� 0

0 I

�
M �

�
� 0

0 I

�
< 0:

Using the partition for M , the top-left block of this matrix inequality is

M�
11�M11 + M�

21M21 � � < 0

and therefore

M�
11�M11 � � < 0:

This is a discrete time Lyapunov inequality, so using the hypothesis

�(M11) < 1 we conclude that � > 0. Now this implies that

Tr(�R) + r � 0

for every (R; r) 2 �1;1, and therefore the hyperplane strictly separates

co(r1;1) and �1;1.

�
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Thus we have now shown above that (d) does indeed imply (a) in The-

orem C.1. It only remains for us to demonstrate that (c) implies (d). This

is the key step in proving the theorem and will require a little prelimi-

nary work. The �rst step is to obtain a more convenient characterization

of co(r1;1), which will allow us to bring some matrix theory to bear on our

problem.

By de�nition � 2 r1;1 means there exists a vector q of unit norm such

that

� =

�
�1(q)

�2(q)

�
:

Consider a convex combination of two points �q and �v in r1;1.

��q + (1� �)�v =

�
��1(q) + (1� �)�1(v)

��2(q) + (1� �)�2(v)

�
:

The following is readily obtained using the transposition property of the

matrix trace:

��1(q) + (1� �)�1(v) =E1MWM�E�1 �E1WE�1 ;

��2(q) + (1� �)�2(v) =TrfW (M�E�2E2M � E�2E2)g;
where W = �qq� + (1� �)vv�. Given a symmetric matrix V we de�ne the

extended notation

�1(V ) =E1MVM�E�1 �E1V E
�
1

�2(V ) =TrfV (M�E�2E2M �E�2E2)g :
Thus the above equations can be written compactly as

��1(q) + (1� �)�1(v) = �1(W )

��2(q) + (1� �)�2(v) = �2(W ) :

This leads to the following parametrization of the convex hull of r1;1.

Proposition C.3. The convex hull co(r1;1) is equal to the set of points

f(�1(W ); �2(W )) : for some r � 1,

W =

rX
i=1

�iqiq
�
i
; jqij = 1; �i � 0 and

rX
i=1

�i = 1g

We remark that in the above parametrization, W is always positive semi-

de�nite and nonzero. Next we prove two important technical lemmas.

Lemma C.4. Suppose P and Q are matrices of the same dimensions such

that

PP � = QQ� :

Then there exists a matrix U satisfying

P = QU and UU� = I :
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Proof . Start by taking the singular value decomposition

PP � = QQ� = V �2V � :

Clearly this means the singular value decompositions of P and Q are

P = V �U�1 and Q = V �U�2 :

Now set U = U2U
�
1 .

�

We use the lemma just proved in demonstrating the next result, which is

the key to our �nal step.

Lemma C.5. Suppose P and Q are both n � r matrices. If PWP � �
QWQ� = 0, for some symmetric matrix W � 0, then

W =

rX
i=1

wiw
�
i

for some vectors wi ;

such that for each 1 � i � r we have

0 = Pwiw
�
i
P � �Qwiw

�
i
Q�:

Proof . By Lemma C.4 there exists a unitary matrix U such that

PW
1
2 = QW

1
2U :

Since U is unitary, there exists scalars ri on the unit circle, and orthonormal

vectors qi such that

U =

rX
i=1

riqiq
�
i

and

rX
i=1

qiq
�
i
= I :

Thus we have for each i that

PW
1
2 qi = QW

1
2Uqi = riQW

1
2 qi :

Thus we set wi =W
1
2 qi to obtain the desired result. �

We now complete our proof of Theorem C.1, and establish that (c)

implies (d) in the following lemma.

Lemma C.6. If the sets r1;1 and �1;1 are disjoint, then co(r1;1) and

�1;1 are disjoint.

Proof . We prove the result using the contrapositive. Suppose that

co(r1;1) and �1;1 intersect. Then by Proposition C.3 there exists a nonzero

positive semi de�nite matrix W such that

�1(W ) = 0 and �2(W ) � 0 :

By de�nition this means

E1MWM�E�1 �E1WE�1 = 0 and TrfW (M�E�2E2M �E�2E2)g � 0
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are both satis�ed.

Focusing on the former equality we see that by Lemma C.5 there exist

vectors so that W =
P

r

i=1 wiw
�
i
and for each i the following holds.

E1Mwiw
�
i
M�E�1 �E1wiw

�
i
E�1 = 0 : (C.1)

Now looking at the inequality

TrfW (M�E�2E2M �E�2E2)g � 0 ;

we substitute for W to get

rX
i=1

w�
i
fM�E�2E2M �E�2E2gwi � 0 :

Thus we see that there must exist a nonzero wi0 such that

w�
i0
fM�E�2E2M �E�2E2gwi0 � 0 :

Also by (C.1) we see that

E1Mwi0w
�
i0
M�E�1 �E1wi0w

�
i0
E�1 = 0 :

Set q =
wi0

jwi0 j
and then we have that �1(q) = 0 and �2(q) � 0 both hold,

where jqj = 1. This directly implies that r1;1 and �1;1 intersect, which

completes our contrapositive argument. �

With the above lemma proved we have completely proved Theorem C.1.

C.2 The case of �0; 3

We begin by reviewing the de�nition of the set r0;3, namely

r0;3 = f(q�H1q; q
�H2q; q

�H3q) : q 2 Cm ; jqj = 1g � R3 ;

where

Hk :=M�
k
E�
k
EkMk �E�

k
Ek 2 Hm for k = 1; 2; 3:

In fact this structure for the Hk will be irrelevant to us from now on.

The proof hinges around the following key Lemma.

Lemma C.7. Given two distinct points x and y in r0;3, there exists an

ellipsoid E in R3 which contains both points and is a subset of r0;3.

By an ellipsoid we mean here the image through an a�ne mapping of

the unit sphere (with no interior)

S = fx 2 R3 : x21 + x22 + x23 = 1g:
In other words, E = fv0 + Tx : x 2 Sg for some �xed v0 2 R3 , T 2 R3�3 .
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Proof . Let

x = (q�
x
H1qx; q

�
x
H2qx; q

�
x
H3qx);

y = (q�
y
H1qy; q

�
y
H2qy; q

�
y
H3qy);

where qx; qy 2 Cm and jqxj = jqyj = 1. Since x 6= y, it follows that the

vectors qx and qy must be linearly independent, and thus the matrix

Q :=
�
qx qy

�� �
qx qy

�
> 0:

Now consider the two by two matrices

~Hk := Q�
1
2

�
qx qy

��
Hk

�
qx qy

�
Q�

1
2 ; k = 1; 2; 3;

and de�ne the set

E := f(�� ~H1�; �
� ~H2�; �

� ~H3�) : � 2 C 2 ; j�j = 1g:

We have the following properties:

� E � r0;3. In fact �� ~Hk� = q�Hkq for q =
�
qx qy

�
Q�

1
2 �, and if

j�j = 1 it follows from the de�nition of Q that����qx qy
�
Q�

1
2 �
���2 = ��Q�

1
2

�
qx qy

�� �
qx qy

�
Q�

1
2 � = 1:

� x; y 2 E . Taking

�x = Q
1
2

�
1

0

�
we have

�
qx qy

�
Q�

1
2 �x = qx, and also

��
x
�x =

�
1

0

��
Q

�
1

0

�
= q�

x
qx = 1:

An analogous construction holds for y.

� E is an ellipsoid. To see this, we �rst parametrize the generating �'s

by

� =

�
r1

r2e
j'

�
;

where r1 � 0, r2 � 0, r21 + r22 = 1, and ' 2 [0; 2�). Notice that we

have made the �rst component real and positive; this restriction does

not change the set E since a complex factor of unit magnitude applied

to � does not a�ect the value of the quadratic forms �� ~Hk�.

We can also parametrize the valid r1, r2 and write

� =

�
cos( �

2
)

sin( �
2
)ej'

�
; � 2 [0; �]; ' 2 [0; 2�):
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Now setting

~Hk =

�
ak bk
b�
k

ck

�
we have

�� ~Hk� = ak cos
2

�
�

2

�
+ ck sin

2

�
�

2

�
+ 2 sin

�
�

2

�
cos

�
�

2

�
Re(bke

i'):

Employing some trigonometric identities and some further manipu-

lations, the latter is rewritten as

�� ~Hk� =
ak + ck

2
+

�
ak � ck

2
Re(bk) � Im(bk)

�24 cos(�)

sin(�) cos(')

sin(�) sin(')

35 :
Collecting the components for k = 1; 2; 3 we arrive at the formula

v = v0 + T

24 cos(�)

sin(�) cos(')

sin(�) sin(')

35 ;
where v0 2 R3 and T 2 R3�3 are �xed, and � and ' vary respec-

tively over [0; �] and [0; 2�). Now we recognize that the above vector

varies precisely over the unit sphere in R3 (the parametrization corre-

sponds to the standard spherical coordinates). Thus E is an ellipsoid

as claimed.

�

The above Lemma does not imply that the set r0;3 is convex; indeed

such an ellipsoid can have \holes" in it. However it is geometrically clear

that if the segment between two points intersects the positive orthant �0;3,

the same happens with any ellipsoid going through these two points; this

is the direction we will follow to establish that co(r0;3) \ �0;3 nonempty

implies r0;3 \ �0;3 nonempty.

However the di�culty is that not all points in co(r0;3) lie in a segment

between two points in r0;3: convex combinations of more than two points

are in general required. The question of how many points are actually

required is answered by a classical result from convex analysis; see the

references for a proof.

Lemma C.8 (Carath�eodory). Let K � V, where V is a d dimensional

real vector space. Every point in co(K) is a convex combination of at most

d+ 1 points in K.
We will require the following minor re�nement of the above statement.

Corollary C.9. If K � V is compact, then every point in the boundary of

co(K) is a convex combination of at most d points in K.



C.2. The case of �0; 3 373

Proof . The Carath�eodory result implies that for every V 2 co(K), there
exists a �nite convex hull of the form

cofv1; : : : ; vd+1g =
(
d+1X
k=1

�kvk : �k � 0;

d+1X
k=1

�k = 1

)
with vertices vk 2 K, which contains v.

If the vk are in a lower dimensional hyperplane, then d points will suf-

�ce to generate v by invoking the same result. Otherwise, every point in

cofv1; : : : ; vd+1g which is generated by �k > 0 for every k will be interior

to cofv1; : : : ; vd+1g � co(K). Therefore for points v in the boundary of

co(K), one of the �k's must be 0 and a convex combination of d points will

su�ce. �

Equipped with these tools, we are now ready to tackle the main result.

Theorem C.10. If co(r0;3) \ �0;3 is nonempty, then r0;3 \ �0;3 is

nonempty.

Proof . By hypothesis there exists a point v 2 co(r0;3) \ �0;3; since

co(r0;3) is compact, such a point can be chosen from its boundary. Since

we are in the space R3 , Corollary C.9 implies that there exist three points

x, y, z in r0;3 such that

v = �x + �y + z 2 �0;3;

with �, �,  non-negative and � + � +  = 1. Geometrically, the triangle

S(x; y; z) intersects the positive orthant at some point v.

Claim: v lies in a segment between two points in r0;3.

This is obvious if x,y, z are aligned or if any of �,�,  is 0. We thus focus

on the remaining case, where the triangle S(x; y; z) is non-degenerate and

v is interior to it, as illustrated in Figure C.1.

x

y

z

v

w

u

�

�

�

Figure C.1. Illustration of the proof.

We �rst write

v = �x + �y + z = �x+ (� + )
1

� + 
(�y + z) = �x+ (� + )w;
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where the constructed w lies in the segment L(y; z). Now consider the ellip-

soid E � r0;3 through y and z, obtained from Lemma C.7. If it degenerates

to 1 or 2 dimensions, then w 2 E � r0;3 and the claim is proved. If not, w

must lie inside the ellipsoid E . The half line starting at x, through w must

\exit" the ellipsoid at a point u 2 E � r0;3 such that w is in the segment

L(x; u). Therefore v 2 L(x;w) � L(x; u). Since x; u 2 r0;3, we have proved

the claim.

Now to �nish the proof, we have found two points in r0;3 such that

the segment between them intersects �0;3 . The corresponding ellipsoid

E � r0;3 between these points must clearly also intersect �0;3. Therefore

r0;3 \ �0;3 is non-empty. �

We remark that the above argument depends strongly on the dimen-

sionality of the space; an extension to e.g. four dimensions would require

a construction of four-dimensional ellipsoids going through three points,

extending Lemma C.7. In fact such extension is not possible and the result

is not true for block structures of the form �0;f with f � 4.

Notes and references

The above results are basically from [23] and [90] in the structured sin-

gular value literature, although the presentation is di�erent, in particular

in regard to the de�nitions of the r sets. Also parallel result have been

obtained in the Russian literature in terms of the \S-procedure" [147, 39].

Our proof for the case of �1; 1 follows that of [105] where the focus is

the KYP lemma, and our proof of the �0;3 case is from [92]. A reference

for the Carath�eodory Theorem is [109].
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